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The layer-by-layer assembly of polyelectrolyte multilayers (PEMs) from natural or synthetic

polyelectrolytes constitutes a very versatile and simple strategy to modify surfaces and modulate cell

behavior. PEMs assembled from natural polyelectrolytes are very appealing for biological and medical

applications due to their high biocompatibility. However, PEMs from natural polyelectrolytes display

poor cell adhesion as they are soft materials with an elasticity modulus of a few kilopascal. In this

report, the authors present results on the modulation of cell adhesion of different immortalized cell

lines by PEMs. Two strategies are employed to vary cell adhesion: (1) a heterogeneous polyelectrolyte

multilayer is assembled employing a rigid bottom block including a synthetic polyelectrolyte with a

soft upper block of natural polyelectrolytes and (2) polyelectrolyte multilayers from natural

polyelectrolytes are thermally annealed after assembly. The physicochemical characteristics of the

PEMs change upon thermal treatment. Depending on the composition of the polyelectrolyte multilayer,

cell adhesion may be enhanced or reduced. Based on the impact on PEM properties and cell adhesion

caused by thermal annealing, a temperature gradient is applied to a PEM of poly-L-lysine/alginate to

induce a spatial variation of PEM properties, resulting in a gradient in cell adhesion. The strategies

shown here can be employed as simple alternatives to tailor PEM properties by means of fully

biocompatible procedures. VC 2017 Author(s). All article content, except where otherwise noted, is

licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/

licenses/by/4.0/). [http://dx.doi.org/10.1116/1.5000588]

I. INTRODUCTION

Cell adhesion is the first step of many physiological and

pathological cell processes associated with wound healing,1

bacterial infections,2 and progression of tumors.3 Controlling

cell adhesion is also a fundamental issue in tissue engineering

and medical implants.

Several strategies have been developed to enhance or

tune cell adhesion by modifying the chemistry, topography,

and mechanical properties of the interface of the substrate

interacting with cells, which results in variations in surface

energy, wettability, stiffness, and roughness, with a concom-

itant impact on cell–material interactions.4–7 Polyelectrolyte

multilayer (PEM) films assembled by means of the layer-by-

layer (LbL) technique from natural or synthetic polyelectro-

lytes (PEs) provide a very versatile and simple strategy to

modify surfaces and modulate cell functions.8,9 The LbL

technique is based on the alternating assembly of oppositely

charged polyelectrolytes, which is mainly driven by electro-

static interactions. The LbL technique has been applied for

the engineering of planar substrates or colloidal particles.10

The PEM thickness and composition can be controlled

with nanometer precision in the vertical direction. In the

LbL deposition, besides PEs, other molecules11,12 such as

nanoparticles,13,14 lipid vesicles,15 and even cells16,17 can be

assembled on top of multilayers or be placed at selected

positions in the PEM, provided that they are charged or

exhibit other types of supramolecular interactions with adja-

cent layers. PEMs fabricated from natural polyelectrolytes,

such as poly-L-lysine (PLL), hyaluronic acid (HA), and algi-

nate (Alg), among others, are very appealing for biological

and medical applications due to their biocompatibility and

biodegradability.18,19

In addition, the LbL technique allows for the assembly of

growth factors, proteins, peptide sequences, and other biomo-

lecules in the PEM, which can guide and tune cell functions.4–6

It has been shown that cell adhesion on PEMs can be tuned by

changing the conditions for polyelectrolyte assembling, i.e.,

ionic strength and pH, as well as layer composition. Cell adhe-

sion can also be tuned by increasing the number of deposited

layers or by cross-linking them.8,20–23 Cross-linking has been

used for tuning the mechanical properties of PEMs made from

biopolymers, as these PEMs usually have a low elastic modu-

lus on the order of few kilopascal24–26 and cells preferentially

adhere to stiffer surfaces. Cross-linking provides stiffness to
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the PEMs to a degree that correlates with the amount of the

cross-linker agent employed, ultimately leading to better cell

adhesion. PEM stiffness has also been increased by the assem-

bly of nanoparticles in the PEM structure9,14 or by capping

soft multilayers with a varying number of synthetic polyelec-

trolyte layers.21,27 The use of cross-linking agents has the dis-

advantage that they may not be fully biocompatible. The use

of synthetic polyelectrolytes that result in stiffer films in com-

bination with biopolymers has the same drawbacks as the

cross-linking since their biocompatibility is limited, discourag-

ing their use for biomedical applications. Moreover, these

approaches, especially the cross-linking, may not always result

in a large enhancement of cell adhesion, which remains lower

than that for uncoated glass surfaces.

Surfaces with gradients in their properties are very appeal-

ing for biomedical applications, and a significant amount of

research has been invested to obtain a gradual change in the

physicochemical properties on the surface of substrates for

cell adhesion.28 PEMs are also more suitable to mimic the

extracellular cell matrix by incorporation of gradients in

physicochemical properties,29 which would induce a spatial

dependence of cell functionalities and eventually lead to

cooperative behaviors. For instance, gradients in PEM pH

assembly,30 in PEM stiffness,29,31 and in the concentration of

cell adhesive peptides or growth factors29,32 have been devel-

oped by microfluidic devices, rendering a spatially controlled

surface arrangement of biological and physical cues impact-

ing the cellular fate. A spatially controlled swelling ratio in

PEMs has been generated by immersing the substrate in a

salt gradient.33 In this work, directional cell migration was

observed depending on cell–cell interactions. Furthermore,

by time controlled immersion in a solution of natural cross-

linkers, a stable stiffness gradient on either free standing

PEMs or assembled on silica substrates has been reported,

demonstrating differential cell adhesion.34

The use of PEMs to modulate cell adhesion requires the

development of simple strategies to properly change the

physicochemical properties of PEMs of natural polyelectro-

lytes to tune their behavior toward cell adhesion, either

favoring or impeding it, without compromising film biocom-

patibility. We reported the effect of the proper combination

of blocks of polyelectrolytes of different stiffnesses to guide

cell adhesion, retaining biocompatibility.35 Furthermore, we

developed a simple procedure to control cell adhesion based

on the modification of the physicochemical properties of

PEMs by thermal annealing.36,37 In this report, we show the

enhancement of A549 cell adhesion by incorporating a block

of rigid PEM made of PLL/poly(sodium 4-styrenesulfonate)

(PSS) underneath a PLL/dextran sulfate (Dex) block, as has

been demonstrated for the natural PLL/Alg PEM. The effect

of thermal annealing on the adhesion properties of PLL/Dex

and chitosan (Chi)/HA PEMs is also studied. While cell

adhesion is improved for PLL/Dex PEMs, Chi/HA PEMs

become antiadhesive for certain cells. Finally, we report

results on postassembled PLL/Alg PEMs treated with a tem-

perature gradient between 10 and 50 �C to produce continu-

ous changes in the physicochemical properties that affect

cell adhesion. Summing up, the cross-linking free homoge-

neous or spatially controlled modulation of the physico-

chemical properties of some natural PEMs toward cell

adhesion is described.

II. EXPERIMENT

A. Materials

PLL solution (Mw 70–150 kDa, P4707), PSS (average

Mw �70 kDa, 243051), poly(allylamine hydrochloride)

(PAH, average Mw �58 kDa, 283223), poly(diallyldimethy-

lammonium chloride) solution (PDAD, average Mw

�200–350 kDa, 409022), poly(acrylic acid) solution (PAA,

average Mw �100 kDa, 523925), Dex sodium salt from

Leuconostoc spp. (average Mw 9–20 kDa, D6924), sodium

chloride, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid

sodium salt (HEPES), phosphate-buffered saline (PBS,

D1408), bovine serum albumin (BSA), fibronectin (FN) from

bovine plasma (F4759), sodium dodecyl sulfate (SDS,

L6026), Triton X-100 (T8787), Tween-20 (P9416), thiazolyl

blue tetrazolium bromide (MTT, M5655), and dimethyl sulf-

oxide (DMSO, 472301) were purchased from Sigma-Aldrich.

Sodium Alg (Cat. No. 17777-0050), Chi (Mw 100–300 kDa,

Cat. No. 349051000), and HA (Mw 1500–2200 kDa, Cat. No.

251770010) were acquired from Acros Organics.

Vinculin, actin cytoskeleton, and cell nucleus were

stained using a Focal Adhesion Staining Kit (FAK 100) from

Millipore. The Roswell Park Memorial Institute medium

(RPMI 1640) with L-glutamine was purchased from Lonza,

and fetal bovine serum (FBS) was purchased from Fisher.

Nanopure water was obtained using a Barnstead Nanopure

Ultrapure Water Purification System.

B. Multilayer film preparation via LbL assembly

All polyelectrolyte solutions were prepared at a concen-

tration of 1mgmlÿ1 in a 150mM NaCl, 10mM HEPES pH

¼ 7.4 buffer (HEPES buffer), with the exception of Chi,

which was prepared in a 150mM NaCl, 10mM sodium ace-

tate buffer (acetate buffer) and adjusted to pH 5.0. All solu-

tions were filtered through a 0.45 lm filter. These

assembling conditions were selected to ensure PEM stability

in physiological conditions.

Cover glasses were cleaned before use as reported previ-

ously.38 Briefly, the glasses were immersed in 10mM SDS

for 3 h, rinsed three times with sterile water, treated with

0.1M HCl overnight, and thoroughly rinsed with nanopure

water. In all PEMs, 15 layers of polyelectrolytes were

assembled, with the first and the last layer always being a

polycation. Polycations and polyanions were alternately

assembled by manual dipping at 24 �C and were allowed to

assemble for 15min. After each layer deposition, films were

rinsed three times with water. PEMs were UV-sterilized for

1 h in the laminar flow hood and dried before use.

The LbL assembly for the different polyelectrolyte com-

binations employed was monitored using a quartz crystal

microbalance with a dissipation (QCM-D) Q-Sense E4 sys-

tem. SiO2 coated quartz crystals (50MHz, Q-Sense) were
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employed. An extended explanation of these experiments

was published elsewhere.35

To study the effect of thermal annealing on PEMs, samples

prepared as described above were left in the incubator at

37 �C for 3 days (annealed PEMs). For some experiments,

PEMs were treated with a temperature gradient after assem-

bly. For this purpose, samples were placed on a silver foil of

1 cm wide, 2 cm long, and 0.5mm thick with one extreme

maintained at 10 �C and the other at 50 �C, using thermostated

chambers (Fig. 1). The resulting temperature gradient appears

to be linear with the distance between sources at fixed temper-

atures, i.e., 50 and 10 �C.

C. PEM physicochemical characterization

The morphology of air-dried PEMs was studied by atomic

force microscopy (AFM) utilizing AFM equipment from

Nanowizard II AFM (JPK, Berlin, Germany). Images were

collected in the tapping mode using a TESP-V2 cantilever

(Bruker, AFM Probes) with a nominal spring constant of

40Nmÿ1 oscillating near a resonant frequency in the range

of 280 to 320 kHz. Film elasticity was determined from the

nanoindentation experiments performed in buffer solutions

in the same AFM equipment.

The wettability of PEMs was evaluated with air-dried

samples using a DSA 100 contact angle measuring system

(Kruss Company). The tangent angle of a three-phase con-

tact point of a sessile drop profile of nanopure water on PEM

surfaces was determined by optical imaging. The volume of

the droplet was kept constant (3ll), while the velocity was

set at 500 ll minÿ1. Four repetitions were conducted for each

sample.

The surface charge of the PEM was assessed by measur-

ing the zeta potential on PEM coated colloidal SiO2 par-

ticles. For this purpose, SiO2 particles with a diameter of

5 lm were first suspended in HEPES or acetate buffer at

1mgmlÿ1. Subsequently, the particles were incubated with

the polyelectrolyte solution (1mgmlÿ1) for 15min. The pro-

cedure was repeated for every deposited layer up to 15

layers. In between polyelectrolyte depositions, three washing

steps were performed via centrifugation. Zeta potential

measurements were carried out using a Malvern Zetasizer

with a disposable folded capillary cell at 25 �C, applying a

cell drive voltage of 40V and using a monomodal analysis

model. Three repetitions were made for each sample.

Samples were diluted in either HEPES or acetate buffers at a

final concentration of 0.2mgmlÿ1. Polyelectrolyte-coated

SiO2 particles were annealed following the same protocol as

for the annealing of planar films.

The adsorption of BSA and FN proteins on the PEMs

before and after annealing was monitored using a QCM-D

Q-Sense E4 system. For this purpose, PEMs were assembled

on SiO2 coated quartz crystals and immediately placed in the

chamber or annealed at 37 �C for three days before use.

D. Cell culture

The A549 epithelial cell line from a human lung carci-

noma and C2C12, a mouse myoblast cell line, were grown in

the RPMI 1640 medium supplemented with 10% FBS (and

antibiotics) and incubated at 37 �C in a 5% CO2 humidified

atmosphere. These cell lines were used in various basic stud-

ies on polyelectrolyte-coated surfaces.39–41

For adhesion assays, glass as control and films on glass

supports were placed into petri dishes with a diameter of

35mm in (Falcon) and UV-sterilized for 1 h,33 a process

widely used and from which no reports indicating significant

changes in the PEM properties are known. Then, 5� 104

cells in 3ml of culture medium were seeded on top.

E. Quantification of cell adhesion

In order to quantify cell adhesion and cell spreading char-

acteristics, cell contours were manually traced using a

Wacom graphic tablet and analyzed using IMAGE-PRO PLUS 6.0

software, Media Cybernetics Inc. The cell area (in lm2) was

determined.41 Differences in the average cell adhesion area

for each PEM and those obtained on glass were evaluated

utilizing one-way analysis of variance (ANOVA) and the

Fisher test with a significance level of p¼ 0.05.

F. MTT cell proliferation assay

For MTT experiments, films were assembled in 14mm

circle cover slips and placed in 24-well polystyrene plates.

Approximately 2.5� 104 cells were seeded by adding 1ml

of medium. After 24, 48, and 72 h of incubation, 80 ll of

MTT solution (5mgmlÿ1 in 10mM PBS) was added into

each well. Cells were incubated in the presence of the MTT

solution for 3 h at 37 �C. Then, the culture medium was

completely removed, and the formazan products were solu-

bilized by adding 600 ll of DMSO to each well. The absor-

bance spectra were measured at 550 nm using a plate reader

(Genios Pro), and the viability was expressed as the number

of cells. Measurements were repeated three times, and the

mean value and its standard deviation were reported for each

condition.

G. Cell immunostaining

Fluorescence staining of vinculin, actin, and cell nucleus

was carried out according to the protocol described in the

FAK 100 user manual and employing the anti-mouse IgG-
FIG. 1. Scheme of the experimental setup to produce a temperature gradient

on the polyelectrolyte multilayer coated glass.
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fluorescein isothiocyanate (FITC) conjugated antibody from

Millipore as the second antibody. Samples were washed and

mounted on a slide by using antifade mounting solution and

observed using a confocal laser scanning microscope (Carl-

Zeiss LSM 10 META).

III. RESULTS AND DISCUSSION

A. Cell adhesion on natural and synthetic PEMs

The average cell spreading area and the duplication rate

of A549 cells for PEMs obtained by assembling natural pol-

ycations and polyanions (PLL, Chi, Alg, HA, and Dex) with

the synthetic ones (PAH, PDAD, PAA, and PSS) are shown

in Figs. 2 and 3. The average cell spreading area is referred

to the value obtained from cells on glass, i.e., 870 lm2. For

PEMs assembled with HA, Alg, and Dex irrespective of the

polycation except for PDAD, the average cell spreading area

was smaller than that obtained by employing PSS as a poly-

anion for any polycation. For PSS based PEMs, the average

cell spreading areas were similar to those obtained from cells

adhered to glass. For PDAD, cells exhibited scarce adhesion

for all polyanions, mainly due to their toxicity.42,43 The

larger average cell spreading area in PEMs with PSS is con-

sistent with the fact that PSS would increase the rigidity of

the PEMs,44 favoring cell adhesion. For PAA as a polyanion,

the average cell spreading area was smaller than with PSS

but larger than that obtained from PEMs assembled with any

natural polyanion employed here and PLL as a polycation.

In general, PAA is a relatively soft material as it retains a

large amount of water and is unsuitable for proper cell adhe-

sion. Single cell geometrical characteristics for each PEM

were extensively described in previous work.35

Cell proliferation was evaluated as the increase in the

number of cells after 48 h. Data show that for all PEMs, cell

proliferation was smaller than for glass (Fig. 3). The values

of cell proliferation relative to those obtained for glass are in

the 0.05–0.9 range. The largest cell proliferation was

obtained for PEMs assembled with Dex as a polyanion irre-

spective of the polycation, which is only smaller than that

observed for (Chi/PAA)7PAA multilayers. For the latter,

although the cell proliferation rate was high, cell adhesion

characteristics were poor. The combination of Chi/HA and

PLL/Alg resulted in substrates with acceptable cell prolifera-

tion, close to 85% of the values observed for glass and

exhibiting an exponential increase in the number of cells

with time.35 In general, for PEMs assembled with both

FIG. 2. Normalized A549 cell average adhesion areas for different (polyca-

tion/polyanion)7polycation multilayers as indicated. For each PEM, the

average cell adhesion areas were smaller than (light gray) or equal to (gray)

those on glass employing the ANOVA and Fisher test with 0.05

significance.

FIG. 3. Cell proliferation expressed as the increase in the number of cells

after 48 h of postseeding, for different (polycation/polyanion)7polycation

multilayers as indicated.
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natural polycations and polyanions, the relative proliferation

approaches 0.75. PEMs assembled with PSS as a polyanion

show a slightly smaller proliferation rate and a linear

increase in the number of cells with time.35

To summarize, the combination of biological polyelectro-

lytes resulted in poorer cell adhesion than the one observed

for glass or for many synthetic polyelectrolyte multilayers,

especially that for PEMs with PSS. Furthermore, the PEM

composition affects cell adhesion and proliferation differ-

ently. Particularly, for PEMs with PSS and good cell adhe-

sion, proliferation is poorer than that for glass.

B. Simple strategies to modify PEM cell adhesion
characteristics

In the Subsecs. III B 1–III B 3, two simple strategies to

modify cell adhesion on PEMs made of natural or biological

polyelectrolyte thin films are presented.

1. Heterogeneous PEMs to improve cell adhesion

With the aim of increasing the cell adhesion properties of

natural biocompatible films, two blocks of PEMs with two

different polyelectrolyte combinations were subsequently

assembled. The first block was formed with PSS and PLL to

reinforce the PEM mechanical properties and to increase cell

adhesion on the resulting system. The top PEM layers were

always composed of a biopolymer combination displaying

moderate cell adhesion but an acceptable cell proliferation

rate, (PLL/Alg)nPLL and (PLL/Dex)nPLL.

The best adhesion properties were obtained for top blocks

formed by two bilayers, n¼ 2, while for n> 4, i.e., top

PEMs with more than two bilayers, cell adhesion was rather

poor. Heterogeneous PEMs appeared to have different prop-

erties toward cell adhesion than those observed on each sin-

gle block PEM. In fact, the physicochemical properties are

different between PEMs assembled upon a pair of polyelec-

trolytes (homogeneous) and heterogeneous PEMs. QCM-D

data show that the assembly of PLL/PSS is rather supralinear

at least for 12 layers, and then, the growth of the subsequent

(PLL/Alg)nPLL multilayer follows a linear trend.35 In con-

trast, the assembly of PLL/Alg PEM from a glass substrate

displays supralinear growth. Furthermore, atomic force

microscopy images show a smoother topography for PLL/

Alg assembled on top of the PLL/PSS underneath the block

than that assembled on glass.35

The (PLL/PSS)6(PLL/Dex)nPLL heterogeneous PEMs

exhibit the same behavior that has been reported for (PLL/

PSS)6(PLL/Alg)nPLL.
35 The results from cell adhesion

experiments employing both (PLL/PSS)6(PLL/Dex)nPLL

and (PLL/PSS)6(PLL/Alg)nPLL are shown in Fig. 4. The

cell cytoplasm and nucleus fluorescence staining allow a bet-

ter appreciation of the differences in adhesion properties

between the single block and diblock PEMs.

Tetramethylrhodamine (TRITC)-conjugated phalloidin

staining of cells adhered to (PLL/PSS)6(PLL/Dex)nPLL or

(PLL/PSS)6(PLL/Alg)nPLL heterogeneous multilayers

allows the visualization of long actin fibers needed for

cytoplasm spreading and focal contact formation. In this

case, a large number of well-developed focal contacts can be

distinguished in cells adhered to diblock PEMs in compari-

son with (PLL/Alg)7PLL or (PLL/Dex)7PLL multilayers.

The results described above can be interpreted as a conse-

quence of polyelectrolyte interdigitation during or after

assembling. Layer interdigitation generates PEMs with phys-

icochemical properties that are absent on each block system.

PSS molecules from the inner block are likely to be present

in the outer block, and polycation molecules are expected to

move through each block. It is widely accepted that interdig-

itation processes occur in PEMs.45–48 When a polyelectro-

lyte layer is assembled in a PEM, it can affect the film up to

four neighbor layers.

2. Cell adhesion enhancement by thermal annealing of
PEMs

The thermal treatment at 37 �C for three days modifies

the physicochemical properties of PEMs, inducing changes

in cell adhesion properties. Previous data showed that similar

results were obtained at a higher temperature and for a

shorter time of annealing. The treatment at 37 �C for 3 days

ensures stable changes in all samples tested. Cell adhesion

properties improve in annealed PLL/Alg and PLL/Dex films.

The changes in the physicochemical properties of PEMs

upon annealing at different temperatures have been exten-

sively described in previous publications.36,37 In these

papers, the topography of PEMs after annealing was

assessed by AFM on air-dried PEMs. Film elasticity upon

annealing was determined from the nanoindentation experi-

ments performed in HEPES buffer using the same AFM

equipment acquiring force–distance curves. AFM characteri-

zation suggested that upon annealing, the film becomes

smoother and stiffer [Figs. 5(a)–5(d)], with the average

roughness changing from close to 4.3 nm to about 2.3 nm.

The zeta potential was measured on PEM coated colloids

diluted in 10mM HEPES, 150mM NaCl (pH 7.4) buffer at a

final concentration of 0.1mgmlÿ1. Although the differences

in the procedure to obtain colloidal PEMs in comparison

with the linear ones may produce changes in the coating

properties, the change in zeta potential between nonannealed

and annealed PEMs allows inferring the evolution of the

charge in PEMs upon annealing. The zeta potential changes

from about zero before annealing to ca. ÿ14mV after

annealing, meaning that the density of charged groups on the

PEM surface has increased after annealing. Changes in PEM

wettability were determined on air-dried samples by measur-

ing the contact angle of constant volume liquid drops. The

contact angle [Figs. 5(e) and 5(f)] increases from 36�6 3� to

92�6 4� and concomitantly, its surface energy, indicating an

augmented hydrophobic character.37

BSA and FN were used as model proteins to characterize

protein adsorption on samples in order to get more informa-

tion about the impact of the annealing process on the behav-

ior of the film with the cell in the culture medium, where

BSA is the most abundant protein and FN is a typical protein
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FIG. 4. Heterogeneous PEM assembly to improve A549 cell adhesion properties. Confocal laser scanning microscopy images of TRITC-conjugated phalloidin

and DAPI stained cells on glass and homogeneous and heterogeneous PEMs, as indicated. Enlarged images of the areas indicated by squares are included to

better appreciate actin filaments. The best results are obtained for (PLL/PSS)6 (PLL/Alg)2PLL and (PLL/PSS)6(PLL/Dex)2PLL multilayers, as is shown by the

relative average cell spreading area for the different systems (bar graphs in the figure). In the case of (PLL/PSS)6(PLL/Alg)2 multilayers, the relative average

spreading area is larger than that observed on glass or on (PLL/PSS)6PLL multilayers. For each PEM, the average cell adhesion areas were smaller than (light

gray), equal to (gray), or larger than (dark gray) that on glass employing the ANOVA and Fisher test with 0.05 significance.
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that promotes cell adhesion. PEMs are charged, and as such,

they can interact with proteins, which will deposit on the

film due to electrostatic interactions. The results from QCM-

D experiments showed that BSA protein adsorption

decreased in annealed samples, as deduced from an approxi-

mately fourfold decrease in the value of –DF after the

adsorption of proteins on annealed samples in QCM-D meas-

urements [Figs. 6(a) and 6(b)]. On the other hand, FN

adsorption exhibited the reverse behavior. Upon annealing,

PLL/Alg PEMs showed a larger value of –DF when FN solu-

tion was passed through the chamber in comparison with

nonannealed PEMs [Figs. 6(c) and 6(d)]. Upon annealing,

PLL/Alg PEM adsorbed a larger amount of FN, a protein

that mediates cell adhesion. It should be pointed out that FN

in an amount as low as 20 ng cmÿ2 (about 5Hz) is expected

to promote cell adhesion.49 Furthermore, not only protein

surface concentration but also protein conformation are rele-

vant parameters for cell adhesion.50 Summing up, the

changes in the film properties described above would inter-

play in a complex manner, producing the change of PLL/Alg

PEMs from antiadhesive to adhesive after annealing [Figs.

6(e) and 6(f)].

The above data indicate that the thermal annealing of

(PLL/Alg)7PLL multilayers induces the reorganization of

polyelectrolyte chains,37 and as a consequence of the differ-

ences in the molar weight between the polyanion and the

polycation, the negative charge at the surface increases.

Polyelectrolyte multilayers of poly(diallyl dimethyl ammo-

nium chloride) and poly(styrene sodium sulfonate) in the

form of capsules show a structural rearrangement after

annealing.51–53 This fact has been interpreted by a maximi-

zation of the polyelectrolyte electrostatic interaction

enhanced by the increase in polyelectrolyte motility inside

the multilayer. Recent studies related to the effect of thermal

treatment on the internal structure of PEMs have been con-

ducted using the neutron reflectometry technique.54 For the

PEMs before and after annealing, no changes in the X-ray

photoelectron spectroscopy spectra with respect to the bind-

ing energies associated with N–CO/C–NH2 and C–NH3

bonds and the molar percentages of C, O, and N could be

observed between the reference spectra of nonannealed

PEMs and PEMs annealed at 37 �C.37 Therefore, it can

be concluded that the annealing does not alter the chemistry

of the multilayers but leads only to a reorganization of the

film.

Another PEM combination can lead to an increase in cell

adhesion after annealing. Indeed, (PLL/Dex)7PLL multilayers

become adhesive for A549 cells after annealing (Fig. 7),

FIG. 5. Physicochemical properties and cell adhesion characteristics of nonannealed and annealed (PLL/Alg)7PLL multilayers. AFM images of nonannealed

(a) and annealed (b) (PLL/Alg)7PLL multilayers. The Young’s modulus, E, (c) and the roughness (d) of nonannealed and annealed PEMs are depicted in bar

graphs. Changes in the contact angle of nonannealed and annealed PEMs averaged from four experiments are shown [(e) and (f), respectively].
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similar to the behavior reported for (PLL/Alg)7PLL multi-

layers. For both PEMs, the average cell spreading area rela-

tive to that obtained on glass was 0.55 before annealing.

After annealing, the cell spreading area reached a similar

value to that obtained for glass, i.e., 870 lm2. The actin

fibers stained with TRITC-conjugated phalloidin are longer

in cells adhered to annealed PEMs than to the nonannealed

ones. These fibers, more clearly appreciated at the cell edges,

define the extension of the cytoplasm and focal contact

formation.

3. Enhancement of the antiadhesive properties of
thermally annealed Chi/HA PEM

In contrast to the cell adhesion enhancement reported

above for PLL/Alg and PLL/Dex PEMs, (Chi/HA)7Chi

FIG. 6. QCM-D data for the third, fifth, and seventh harmonics from BSA

adsorption on nonannealed (PLL/Alg)7PLL multilayer (a) and annealed

(PLL/Alg)7PLL multilayer (b). QCM-D data from FN adsorption on nonan-

nealed (PLL/Alg)7PLL multilayer (c) and annealed (PLL/Alg)7PLL multi-

layer (d). Dashed lines indicate the change from pure buffer to protein

solution and vice versa. Immunostaining of vinculin (green) and staining of

actin (red) and cell nucleus (blue) of C2C12 myoblast cells on (PLL/

Alg)7PLL before and after annealing [(e) and (f), respectively]. Enlarged

images are shown in the inset.

FIG. 7. Cell adhesion enhancement after annealing at 37 �C. Confocal epi-

fluorescence microscopy images of cytoplasm and nucleus stained A549

cells cultured on nonannealed and annealed PEMs. Enlarged images of the

areas indicated by squares are included to better appreciate actin filaments.

The average relative cell spreading area on (PLL/Alg)7PLL and (PLL/

Dex)7PLL becomes similar to that observed on glass upon annealing. The

standard errors are included in the bar graphs. The grayscale colors indicate

significant differences between average cell spreading areas of cells in the

different samples (p¼ 0.05).
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multilayers annealed at 37 �C for three days generate an

enhanced antiadhesive surface, in contrast to the behavior

observed.

The effect of annealing at 37 �C on some physicochemi-

cal properties of PEMs assembled with Chi as a polycation

and HA as a polyanion was measured (Fig. 8).

AFM measurements of Chi/HA PEMs after being

immersed in HEPES buffer and dried [Figs. 8(a) and 8(b)]

revealed that the surface becomes smoother at the submi-

crometer scale with the annealing, as in the case of PLL/Alg

PEMs, but while for the latter, a granular homogeneous

structure is formed, for Chi/HA PEMs, a fibrillar network

can be distinguished. The thermal annealing causes the fibers

to become thinner and more bidimensional, i.e., the surface

is covered with structures having an average height close to

5 nm, a value significantly smaller than those measured for

the nonannealed PEM. The elasticity of Chi/HA PEMs was

determined from nanoindentation experiments [Fig. 8(d)]. In

contrast to the changes in the Young’s modulus observed for

PLL/Alg multilayers, no conclusive Young’s modulus differ-

ences between nonannealed and annealed Chi/HA PEMs

could be determined.

Contact angle values were determined on nonannealed

and annealed Chi/HA PEMs [Fig. 8(f)]. The former exhib-

ited a contact angle of 30.2�6 0.3�, and after annealing, the

contact angle decreased to values of 20.6�6 1.8�. From

these data, we can conclude that although the nonannealed

PEMs are hydrophilic, the thermal annealing increases the

FIG. 8. Physicochemical properties and cell adhesion characteristics of nonannealed and annealed (Chi/HA)7Chi multilayers. AFM images of nonannealed (a)

and annealed (b) (Chi/HA)7Chi multilayers. AFM line profile from images depicted in (a) and (b) as indicated by the discontinuous line (c). The Young’s mod-

ulus (d) and the roughness (e) of nonannealed and annealed PEMs are depicted in bar graphs. Average contact angle and zeta potential data for nonannealed

and annealed PEMs are shown (f). QCM-D data for the third, fifth, and seventh harmonics from BSA adsorption [(g) and (h)] on nonannealed (Chi/HA)7Chi

multilayer (g) and annealed (Chi/HA)7Chi multilayer (h). QCM-D data from FN adsorption on nonannealed (Chi/HA)7Chi multilayer (i) and annealed (Chi/

HA)7Chi multilayer (j). Dashed lines in (g)–(j) indicate the time at which HEPES buffer or protein solution is flown through the QCM cell.
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hydrophilic character of the PEMs. The zeta potential meas-

urements of Chi/HA PEMs in HEPES buffer indicate a nega-

tive charge on the surface of these films for both the

nonannealed and annealed PEMs, being ÿ24mV for the for-

mer and ÿ31mV for the latter. QCM-D data [Fig. 8(g)–8(j)]

exhibit a rather complex behavior and suggest that neither

BSA nor FN protein adsorption can feasibly be detected by

this technique. Thus, either nonannealed or annealed Chi/Ha

PEMs result in antifouling substrates.

The observed adhesion properties were cell-type depen-

dent. For C2C12 cells, the average cell spreading area dimin-

ishes to about a half of that measured before annealing; for

the latter, it was close to that found on glass (920 lm2). For

A549 cells, the adhesion was poor either before or after

annealing (Fig. 9).

The changes in the physicochemical properties of Chi/HA

PEMs indicate an increase in the hydrophilicity and the neg-

ative charge and a decrease in the roughness of PEM upon

annealing. Furthermore, no differences in stiffness and pro-

tein adsorption between annealed and nonannealed PEMs

were detected. The magnitude of the changes in the contact

angle and surface charge is rather small to take account for

the changes in cell adhesion properties, and thus, changes in

Chi/HA film topography upon annealing would play a key

role. It has been extensively reported that the topographic

characteristics of the substrate at different size scales have a

great influence on cell functionality.55,56 In general, cells

tend to adhere to rougher surfaces displaying features at the

micro- and nanoscale. Annealed Chi/HA PEMs show less

roughness, are more planar, and cover the substrate more

homogenously. These facts are coherent with a lower cell

adhesion.

The above data from adhesive and antiadhesive films

show that thermal annealing changes the physicochemical

properties of each PEM tested differently and modulates cell

adhesion in a cell-dependent manner. PEM stiffness has

been reported to play a key role in cell adhesion,14,20,41 but it

should be pointed out that other factors impact cell adhesion.

Moreover, PEMs tested in this report are a few tens of nano-

meters, and it is known that cells are able to sense the rigid-

ity of the underneath glass substrate, even several polymer

layers below.21 Possibly, the changes in physicochemical

properties would affect the adsorption of different types of

proteins and the degree of coverage, and even more impor-

tantly, protein conformation play a role in driving cell adhe-

sion and spreading, as reported.57,58

C. Thermal gradient to locally modulate PEM adhesion
properties

Employing the experimental setup described above (Fig.

1), a temperature variation between 50 and 10 �C was

applied along the whole length of a glass substrate coated

with the (PLL/Alg)7PLL multilayer. The resulting tempera-

ture gradient was close to 0.002 �C lmÿ1.

A continuous change in the physicochemical properties

appears to set in along the substrate upon the application of a

thermal gradient (Fig. 10). The observed values of contact

angles along the gradient are close to those observed in

PEMs annealed at a uniform temperature. Moreover, the

adsorption of FITC-labeled BSA protein decreased in going

from the side at the lowest temperature to the side at the

highest temperature.

For the substrate region held at the highest temperature,

C2C12 cell adhesion was roughly close to that observed on

glass. In contrast, in the coldest region, cell adhesion was very

poor. More significant changes in the average cell spreading

area were observed between T2¼ 30 and T1¼ 22 �C, as shown

FIG. 9. Cell adhesion characteristics of nonannealed and annealed (Chi/

HA)7Chi multilayers for A549 and C2C12 cell lines. For A549 cells, no sig-

nificant effect is observed upon annealing, but for C2C12 myoblast, a clear

decrease in cell adhesion is measured.
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in Fig. 10. The average cell spreading area at T2 ÿ DT was

2606 15lm2, and at T1þDT, it was 7156 20lm2, with

DT¼ 3 �C.

It is worth noting that upon thermal annealing, PEMs

exhibit a continuous change in their wettability although cell

adhesion changes significantly in a narrower temperature

range. The clearest effect on the average cell spreading area

appears to be between 22 and 30 �C. This is in consonance

with the fact that in the case of uniform thermal annealing of

samples, 37 �C is enough to induce significant changes in

cell adhesion properties.

The application of a thermal gradient to locally modify

the physicochemical properties of films as well as the adhe-

sion characteristics toward different cell lines can be

extended to other polymeric systems to increase the versatil-

ity of new materials for rapid testing of cell functionalities.

IV. SUMMARYAND CONCLUSIONS

In this report, two simple strategies to modulate cell

adherence to PEMs made of natural polyelectrolytes are pre-

sented. For (PLL/Dex) PEMs, cell adhesion is enhanced by

assembling a (PLL/Dex)n block on top on an inner block of

the (PLL/PSS)6 film or by thermal annealing at 37 �C. On

the other hand, for Chi/HA PEMs, thermal annealing enhan-

ces antiadhesive properties in a cell type-dependent manner.

We show results on cell adhesion on PEMs assembled by

the combination of both natural and synthetic polyelectro-

lytes. In general, PEMs with both natural polycations and

polyanions result in surfaces with poor cell adhesion. In con-

trast, PLL/PSS based PEMs exhibit improved adhesion, at

least for the tested cell lines. Thus, a heterogeneous con-

struction employing (PLL/PSS)6 as an inner block and (PLL/

Alg)nPLL or (PLL/Dex)nPLL as an upper block is proposed

to improve cell adhesion without losing biocompatibility.

The best results were obtained for n¼ 2. The results are

explained by interdigitation of polyelectrolytes.

The other strategy to modulate cell adhesion is the thermal

annealing of PEMs. (PLL/Alg)7PLL and (PLL/Dex)7PLL

multilayers improve cell adhesion properties upon thermal

annealing. In contrast, (Chi/HA)7Chi multilayers show a

decrease in the average cell spreading area after annealing.

The thermal energy would increase the polyelectrolyte chain

mobility and favor a maximization of the interactions between

polyelectrolytes, resulting in an increase in the contact angle

and a decrease in surface charge. This is reflected in changes

in the adsorption of proteins and in cell adhesion, concomi-

tantly with the cell phenotype.

Finally, based on the results from thermal annealing at uni-

form temperature, a thermal gradient with temperatures in the

10ÿ50 �C range was applied to PLL/Alg PEMs with the aim

of producing a continuous change in the physicochemical

FIG. 10. Effect of a thermal gradient on the surface wettability, cell adhesion characteristics, and adsorption of labeled BSA protein. Contact angle measured at

PLL/Alg PEM sites annealed at different average temperatures (a). Phase contrast images of C2C12 myoblast cells adhered to PEM regions thermally treated

between 22 and 30 �C (b). The changes in the PEM physicochemical properties induced along the 22–30 �C temperature gradient produce significant changes

in cell adhesion properties, as indicated by dashed lines in (a) and (b). The minimum and maximum temperatures for all regions are included. Enlarged images

of regions indicated by dashed squares are shown to better appreciate the changes in the cell morphology along the film after the treatment with the tempera-

ture gradient. FITC-labeled BSA adsorbed on three different regions of PLL/Alg PEM thermally treated (c). The fluorescence intensity is higher for the region

at lower temperature.
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properties that affect cell adhesion. Surfaces with gradients of

properties are important to produce materials that better mimic

the extracellular matrix interacting with cells and are of partic-

ular interest for basic studies of the interactions between bio-

logical species and surfaces since the gradual impact of a

selected property can be examined in a single experiment.
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