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ABSTRACT: This paper presents theoretical results on the adsorption of
polyelectrolyte chains on surfaces with opposite charge and nanoscale curvature.
The theory predicts that increasing the surface curvature can either increase or
decrease the amount of adsorbed polyelectrolyte, depending on the type of
curvature (convex or concave) and whether the polyelectrolyte under-
compensates or overcompensates the initial charge of the substrate. For small
bulk salt concentration (10−4 M), increasing the curvature of the surface
displaces the adsorption equilibrium of the polyelectrolyte in order to decrease
the absolute value of the effective charge density for concave surfaces
(nanochannels) or to increase it for convex surfaces (nanoparticles). This
behavior is traced back to the dependence of the total free energy as a function
of the curvature of the surface. For intermediate salt concentrations (0.01−0.1
M), the magnitude of the effect is larger than that for low salt concentrations,
although the general picture becomes more complex due to the fact that the
added salt competes with the polycation to screen the negative charge of the substrate. It is argued that the effect under
discussion will be relevant for nano-objects that have different radii or type of curvature at different locations (i.e. conical
nanochannels or cylindrical nanorods with hemispherical tips) as our theory predicts inhomogeneous polyelectrolyte adsorption
on their surfaces.

1. INTRODUCTION

Polyelectrolyte adsorption on an oppositely charged substrate is
a powerful method to modify rough and curved surfaces
because the chains of the polyelectrolyte can adapt to the shape
of the adsorbing surface. The conformal nature of polyelec-
trolyte adsorption and the possibility of tailoring film thickness
via sequential adsorption of oppositely charged macromolecules
(layer-by-layer self-assembly1) make the adsorption of poly-
electrolytes on oppositely charged surfaces the first step in
many techniques for surface modification of colloids, nano-
particles, nanopores, and nanochannels.1−7

The interaction of a single polyelectrolyte chain with surfaces
of different curvatures has been the subject of recent
investigations.8−13 The adsorption of polyelectrolytes from
solution to form a film on planar and convex surfaces has been
also extensively studied in the literature, and it is relatively well-
understood.14−22 However, the adsorption of polyelectrolytes
from solution on concave surfaces is still poorly investigated.
Moreover, the effects of the radius and type of surface curvature
(concave vs convex) on the adsorption of polyelectrolytes

remain largely unexplored. Understanding polyelectrolyte
adsorption on curved surfaces is particularly important in
those systems where different radii of curvature or types of
curvature coexist, for example, nanorods3 (which have
cylindrical bodies and hemispherical tips) and conical nano-
channels (which have narrow nanometric tips and broad
micrometric bases).2 The importance of surface curvature for
polyelectrolyte adsorption is anticipated from the fact that
surface curvature determines the volume element at a given
distance from the surface, d, which modulates the electrostatic
and nonelectrostatic interactions among polyelectrolytes.23 The
volume element at a distance d from the surface is constant for
planar surfaces, it increases as ∼1 + d/R for cylinders (where R
is the radius of the cylinder), decreases as ∼1 − d/R for
cylindrical channels, and increases as ∼(1 + d/R)2 for spherical
particles. This discussion stresses the importance of competing
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lengthscales in polyelectrolyte adsorption on curved nano-
objects as the radii of curvature of a few tens of nanometers are
commensurable with two important lengthscales: the dimen-
sion of the polyelectrolyte chain and the Debye length of the
solution.
In this work, we present the results of our systematic

theoretical investigation of the effect of surface curvature on
polyelectrolyte adsorption. We show that increasing the
curvature of the channel may increase or decrease the amount
of adsorbed polyelectrolyte, depending on the concentration of
the polyelectrolyte and salt ions in solution and the type of
curvature (convex or concave). Finally, we address the potential
experimental relevance of our findings by systematically
comparing the amount of adsorbed polyelectrolyte on surfaces
of equal charge but opposite curvature.

2. THEORETICAL METHODS
The system under study consists of a charged surface in
equilibrium with a solution of an oppositely charged
polyelectrolyte. We will assume that the chargeable groups in
the polyelectrolyte and the surface are fully dissociated (i.e. they
are strong electrolytes). The present study comprises a
polycation interacting with a negatively charged surface, but,
of course, our results can be straightforwardly applied to the
case of a polyanion interacting with a positive surface. We
theoretically study polyelectrolyte adsorption on curved
surfaces with a previously developed molecular theory,4,23−26

which explicitly considers the shape, size, charge, and
conformations of all molecular species in the system. This
approach has been used in the past to study different systems in
soft-matter science, and its predictions have been found to be in
good agreement with experimental observations.4,5,27 This
theoretical approach consists of writing down an approximation
for the proper thermodynamic potential of the system, which in
the present case is the grand potential Ω
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where β is the inverse temperature, i.e. 1/kBT.
The grand potential Ω is a functional of the position-

dependent densities of the mobile species, ρi(r) (with i = c, a,
w, and chain for cations, anions, water molecules, and
polyelectrolyte chains, respectively), the probability distribution
function of the polyelectrolyte conformations, P(r,α), and the
position-dependent electrostatic potential, ψ(r). The first term
in eq 1 corresponds to the mixing entropy of free polymer
chains plus the contribution from their standard chemical
potential (βμchain° ). In this term, ρchain(r) is the number density
of chains at r (we use the convention that assigns the position
of a chain by the position of the segment closest to the surface)
and vw is the volume of a water molecule. Note that this volume
appears in the translational entropy of polyelectrolyte chains
because we use vw as the reference volume in our theory (the

choice of the reference volume has no thermodynamic or
structural consequences because choosing a different reference
volume will just shift the value of βμchain° ). The function G(r)
defines the geometry of the calculation, i.e., it determines the
volume element as a function of the distance from the origin, as
we explain below. The second term in eq 1 is the contribution
from the translational entropies of small molecules in solution
(cations, anions, and water molecules). The third term is the
contribution from the conformational entropy of polyelec-
trolyte chains; in this term, P(r,α) is the probability of having a
chain in the conformation α at position r, where α labels the
conformation of the polymer chain. The fourth and fifth terms
are the electrostatic energy of the system, where ε is the
dielectric constant and ⟨ρQ(r)⟩ is the density of charges at r,
which results from adding the charge densities at r of cations,
anions, and polyelectrolyte chains. In the fifth term, σsurf is the
surface charge density of the substrate. The last term in eq 1 is
equal to the sum of −μiNi for all species in the system, where μi
is the chemical potential of species i and Ni is the total number
of particles of species i, which is calculated in eq 1 by
integrating ρi(r) over the entire system. The terms −μiNi are
included in Ω because we describe a system where the chemical
potentials of all species are fixed by their bulk concentrations
(i.e. Ω is a grand potential). Note that we do not include non-
electrostatic polyelectrolyte−surface or polyelectrolyte−poly-
electrolyte attractions (the polyelectrolyte is in a good solvent)
in eq 1.
Our theory takes advantage of the symmetry of the system by

assuming that there are inhomogeneities only in the direction
normal to the planar, cylindrical, or spherical substrate.
Therefore, the position within the system in all functions in
eq 1 is given by the position in the normal direction, r. We use r
= 0 for the center of the spherical nanoparticle, the central axis
of the cylindrical nanochannel or nanorod, or the position of
the planar surface. In the case of nanoparticles, nanorods, or
nanochannels, their surface is located at r = R. The function
G(r) is given by the type of geometry (planar, cylindrical, or
spherical): G(r) dr corresponds to the volume element as a
function of the distance from the origin. More specifically, G(r)
dr = A dr for a planar surface (where A is the area of the
surface), G(r) dr = 2πLr dr for cylindrical nanorods or
nanochannels (where L is the length of the cylinder), and G(r)
dr = 4πr2 dr for spherical particles. The approximation of
inhomogeneities only in the normal direction implies that we
describe very long (length much larger than radius) cylindrical
rods and channels, so that end effects are negligible.
The grand potential Ω does not contain an explicit term

accounting for steric repulsions. Intramolecular steric repul-
sions for the polyelectrolyte chains are accounted for by
considering only self-avoiding conformations. All intermolecu-
lar steric repulsions are included at a mean-field level through
the use of a packing constraint

∑ρ ρ⟨ ⟩ + =
=

r v r v r( ) ( ) 1 (for all )
i

i ip p
a,c,w (2)

where vi is the volume of species i (i = a, c, w, or p for anions,
cations, water molecules, and polyelectrolyte segments). In this
equation, ⟨ρp(r)⟩ is the density of polymer segments at r, which
is not an independent thermodynamic variable because it can
be calculated from ρchain(r) and P(r,α)
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where n(r′,α,r) dr is the number of segments that a
polyelectrolyte chain in conformation α and with its segment
closest to the surface at r′ has in the region located between r
and r + dr. Note that this function depends on the geometry of
the system, i.e. for a given conformation α and position of the
segment closest to the surface at r′, n(r′,α,r) is different in
planar, cylindrical, or spherical geometries.
We determine the equilibrium state of the system by finding

the stationary point of the grand potential subjected to three
constraints that are enforced using Lagrange multipliers. The
first constraint is the packing constraint (eq 2). The second
constraint is the normalization of P(r,α)

∑ α =
α

P r r( , ) 1 (for all )
(4)

Finally, the third constraint is global electroneutrality
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Considering the constraints, we look for the stationary point
of the following potential
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In this expression, the global electroneutrality condition is
enforced by the Lagrange multiplier λ, the normalization is
enforced by the Lagrange multiplier ξ(r)G(r), and the packing
constraint at r by the Lagrange multiplier βπ(r)G(r). We now
find the extremum of the grand potential with respect to ρi(r),
P(r,α), and ψ(r).
The extremum of the grand potential in eq 3 with respect to

the electrostatic potential leads to the Poisson equation

ψ
ε

ρ∇ = − ⟨ ⟩r r( )
1

( )2
Q (7)

We have not included in this equation the Lagrange multiplier
associated with global electroneutrality, λ, because λ appears as
an additive constant to ψ and therefore has no thermodynamic
consequences due to the arbitrary choice of the zero for the
electrostatic potential. Note that the Laplacian operator is ∇2 =
∂
2/∂r2 for planar geometry, ∇2 = ∂

2/∂r2 + (1/r)∂/∂r for
cylindrical geometry, or ∇2 = ∂

2/∂r2 + (2/r)∂/∂r for spherical
geometry. The boundary condition of the electrostatic potential
at the surface is

ψ
σ

ε
∇ | ̂ = −=r n( )r r R

surf
(8)

where n̂ is a vector normal to the surface and σsurf is the charge
of the surface. The boundary condition at the bulk solution is
ψbulk = 0. In the case of the cylindrical channel, we should also
consider the symmetry condition at the center of the channel, r
= 0

ψ∇ | ==r( ) 0r r 0 (9)

The stationary point of the potential βW with respect to
P(r,α) results in
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In this expression, q(r) is a single-chain partition function for
the chains that have their segment closest to the surface at r.
This partition function ensures the normalization condition, eq
4, and it is related to the Lagrange multiplier ξ(r), q(r) =
exp(ξ(r)/ρchain(r) + 1). It is interesting to note that P(r,α)
depends on the electrostatic potential at different positions in
the system. On the other hand, the electrostatic potential
profile depends on the charge density ⟨ρQ(r)⟩, which contains
contributions from the polyelectrolytes (as well as the mobile
ions). Although our theory treats electrostatic interactions at a
mean field level, the nonlocal nature of the coupling between
polyelectrolyte conformations and the electrostatic potential
profile introduces correlations into the theory which are
important to properly describe some aspects of polyelectrolyte
adsorption, as we show in the results section.
The extremum of βW with respect to ρi(r) for i = a and c

results in

ρ βμ βμ β π β ψ= − − −−r v v r q r( ) exp( ( ) ( ))i w i i i i
1 0
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and the extremum with respect to ρw(r) yields
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w w
0
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These expressions show that π(r), the Lagrange multiplier
associated with the packing constraint, plays the role of a local
osmotic pressure.
The extremum with respect to ρchain(r) gives after some

rearrangements and substitutions

ρ βμ βμ= −−r q r v( ) ( ) exp( )chain w
1

chain chain
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(13)

The chemical potentials of water, ions, and polyelectrolyte
chains required in eqs 11−13 are obtained from the
composition of the bulk as

βμ βμ ρ β π− = +v v( ) ln( )i i i i
0 bulk

w
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(14)

for anions and cations
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w
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for water molecules and

βμ βμ ρ− = −v q( ) ln( ) lnchain chain
0

chain
bulk

w
bulk

(16)

for polyelectrolyte chains.
In practice, because of the presence of the packing constraint,

it is also possible to establish a relationship between the
chemical potential of the different species in solution and
rewrite eqs 11−16 in terms of exchange chemical potentials.24

We solve the set of integro-differential eqs 2−4 and 7−13 by
discretizing the equations and solving the discretized equations
with numerical methods (see Supporting Information). As an
outcome of the theory, we obtain equilibrium structural
properties (including the functions ρi(r), P(r,α), and ψ(r))
and thermodynamic quantities (including the grand potential,
Ω).
In order to present the results of our calculations, we will

define two useful variables. First, we define σpol as the number
density of charges of the adsorbed polyelectrolytes. In our
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model, each polyelectrolyte has a chain length of N and each
segment has a positive charge, thus σpol is equal to the product
of the surface density of adsorbed polyelectrolyte chains by the
chain length. We consider a chain to be adsorbed if it has at
least one segment located at a distance equal to or smaller than
δ from the surface (we use δ equal to the segment length, 0.5
nm, in all calculations). On the basis of this definition, σpol is
given by:

∫σ ρ=
δ+ ⎛

⎝⎜
⎞
⎠⎟q N

G r
G R

r r
( )
( )

( ) d
R

R

pol p chain
(17)

We also define the effective surface charge density, σeff, as the
sum of the charge density due to polyelectrolyte chains
attached to the surface (σpol) and the charge density of the
negatively charged surface (σsurf), i.e. σeff = σpol + σsurf (note that
σpol is positive and σsurf is negative). Note that in this definition,
all segments of adsorbed polyelectrolyte chains contribute to
the effective charge density of the surface.

3. RESULTS
3.1. Polyelectrolyte Adsorption on Nanochannels. We

start our analysis by considering polyelectrolyte adsorption on a
(very long) cylindrical nanochannel. Figure 1 shows our
predictions for σpol (number density of charges of the adsorbed
polyelectrolytes, left axis) and σeff (effective surface charge
density, right axis) and as a function of channel radius for
different concentrations of polyelectrolyte and added salt in
solution.
Strikingly, the theory predicts that the effective surface charge

could either increase or decrease when increasing the radius of
the nanochannel. Moreover, in some conditions (e.g. Cpol =
10−2 M in Figure 1b), the effective surface charge density, σeff,
can change its sign as the radius of the channel decreases, going
from a charge overcompensation scenario (σeff > 0, i.e.,
polyelectrolyte charge density larger than surface charge
density) to charge undercompensation (σeff < 0, polyelectrolyte
charge density smaller than surface charge density). The effect
of curvature on the amount of adsorbed polyelectrolyte shown
in Figure 1a (Csalt = 0.1 M) and Figure 1b (Csalt = 0.01 M) is
relatively small, yielding a maximum change of adsorption of
around 25% when going from the highest (3 nm) to the lowest
(50 nm) curvatures considered in the plots. At the end of this
communication, we analyze in detail the conditions that
maximize the effect of curvature on the amount of adsorbed
polyelectrolyte and discuss its potential experimental relevance.
In order to provide physical insights on the results in Figure

1a,b, let us analyze the case of very low ionic strengths (Csalt =
10−4 M, shown in Figure 1c). In this case, the concentration of
salt cations is very small and thus the charges on the surface
must be compensated almost quantitatively by those of the
adsorbed polyelectrolyte. Note that the scale of the surface
charge density in Figure 1c indicates that the effect of channel
radius on adsorption is very small and that the deviations from
stoichiometric charge compensation (σeff = 0) are always
smaller than 0.5%. Despite the very small magnitude of the
effect for Csalt = 10−4 M, the results in Figure 1c show a very
interesting relationship between the amount of adsorbed
polyelectrolyte, the type of charge compensation, and the
radius of the channel. When the nanochannel charge is
overcompensated by the polyelectrolyte (σeff > 0, which occurs
for large bulk polyelectrolyte concentrations, see Figure 1c),
decreasing the diameter of the channel leads to a decrease in

the amount of the adsorbed polyelectrolyte. On the other hand,
when the charge of the wall is undercompensated by the
polyelectrolyte (σeff < 0, which occurs for small polyelectrolyte
bulk concentrations), then the amount of adsorbed polyelec-
trolyte increases for decreasing diameter. Finally, for σeff ≈ 0,
the amount of adsorbed polyelectrolyte is almost constant with
the diameter of the channel (which occurs for Cpol between
10−3 and 10−4 M).
We explain the results in Figure 1c as follows. In the case of a

charged surface in contact with a salt solution only (without
polyelectrolyte chains in solution), decreasing the radius of the
channel for a constant surface charge, leads to an increase in the
grand potential of the system, Ω (see Figure 2a). Such increase
in Ω is caused by the fact that narrowing the channel confines
the cation counterions in the electrical double layer. The
confinement of counterions is evidenced in Figure 2b, which
shows that the concentration of cations in the double layer is
larger for the cylindrical channel than for the flat surface. In the
presence of the polyelectrolyte in solution, the increase of the
grand potential with increasing curvature can be alleviated by

Figure 1. Charge density of positively charged polyelectrolytes
adsorbed on the surface of a negatively charged nanochannel, σpol
(left axis in the plot), and effective net charge density of the surface,
σeff = σpol + σsurf, (right axis) as a function of radius of the nanochannel.
Different curves indicate different bulk concentrations of the
polyelectrolyte, Cpol (expressed in terms of the molar concentration
of monomers), as indicated below each curve. The bulk salt
concentration was Csalt = 0.1 (a), 0.01 (b), or 10−4 M (c). Other
calculation parameters: chain length, N = 50; charge density of the
surface, σsurf = −0.1 |e|·nm−2.
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decreasing the effective surface charge, σeff. The decrease of σeff
can be achieved by adsorbing polyelectrolytes from solution if
σeff < 0 or by desorbing them from the surface if σeff > 0, which
explains the results in Figure 1c.
The example in Figure 1c is useful to analyze the mechanism

by which nanoconfinement regulates the amount of adsorbed
polyelectrolyte, but, as we mentioned above, the magnitude of
the effect in that case is very small. The effect is small in this
case because, in the absence of salt ions, the only mechanism of
charge compensation is polyelectrolyte adsorption; therefore,
the amount of adsorbed polyelectrolyte cannot deviate too
much from that required for stoichiometric charge compensa-
tion (i.e. σeff = 0) without incurring in large energetic penalties.
On the other hand, for intermediate ionic strengths (e.g. Csalt =
0.1 and 0.01 M for Figure 1a,b, respectively), the cations of the
salt compete with the polycation to compensate the negative
charges of the substrate, which allows for significant deviations
from stoichiometric charge compensation and thus enhances
the effect of nanoconfinement on polyelectrolyte adsorption.
The competition between the polycation and the small salt

cations to compensate the negative charges on the surface is
apparent Figure 3, which shows the molar concentration of salt
ions and polyelectrolyte segments as a function of the distance
to the center of the channel for Csalt = 0.1 M (panel a) and Csalt
= 10−4 M (panel b). In the case of Csalt = 0.1 M, there is an
increase in the concentration of cations near the surface, which
indicates that the salt cations compete with the polyelectrolyte
to screen the negative charges of the substrate. Note also the
small depletion of cations and a small enhancement of anion
concentration around 12 nm in panel a. This effect is due to the
inversion of the electrostatic potential at the top of the
polyelectrolyte layer (this inversion does not imply over-
compensation of the net charge of the surface, i.e., σeff < 0 for

these conditions). In the case of Csalt = 10−4 M, the
concentration of cations near the surface is negligible compared
to that of the polyelectrolyte. The competition between
polyelectrolyte chains and small ions to compensate the charge
of the surface in Figure 3a allows deviations from perfect
polyelectrolyte-surface stoichiometric compensation. It is also
responsible for the fact that the effective surface charge for
which the amount of adsorbed polyelectrolyte is independent
of the surface curvature occurs for σeff ≈ 0 for Csalt = 10−4 M
(Figure 1c) but for σeff < 0 for higher ionic strengths.

3.2. Polyelectrolyte Adsorption on Nanorods and
Nanoparticles. So far we have analyzed the effect of channel
diameter on polyelectrolyte adsorption for cylindrical nano-
channels. An important question is whether the mechanisms
discussed above also hold for convex surfaces, namely,
nanoparticles and nanorods. Figure 2b shows that the
concentration of cations in the double layer is smaller for a
spherical nanoparticle than for a cylindrical nanorod, which in
turn is smaller than that for the planar surface. Therefore,
increasing the curvature of a convex charged surface decreases
the degree of confinement of the counterions in the double
layer and decreases the grand potential of the system (Figure
2a). Hence, one expects that the effect of curvature for
polyelectrolyte adsorption on convex surfaces will be the
opposite to that described above for nanochannels: we expect a
decrease of polyelectrolyte adsorption with increasing curvature
if σeff < 0 and an increase if σeff > 0 (i.e. the system responds to
increasing curvature by changing the amount of adsorbed
polyelectrolyte in order to increase the absolute value of σeff).
This argument is in full agreement with the predictions of the
theory (see Figure 4 for long cylindrical nanorods and spherical
nanoparticles). Interestingly, Figure 4 shows that for a given
polyelectrolyte and salt concentrations, the effect of curvature
radius on polyelectrolyte adsorption is stronger for the
spherical nanoparticle than for the cylindrical rod, which is

Figure 2. (a) Difference of grand potential between a curved surface
(nanochannel, nanorod, or spherical nanoparticle) and a planar surface
as a function of the radius of the curved surface. Calculation
conditions: σsurf = −0.1 |e|·nm−2, Csalt = 0.01 M. (b) Concentration of
cations as a function of the distance from the surface for the systems in
panel a (the radius of curvature in this panel is R = 10 nm). The cation
concentration in bulk is shown in dotted lines.

Figure 3. Molar concentration profiles of the adsorbed polyelectrolyte,
cations, and anions as a function of the distance from the center of a
channel of radius R = 15 nm (r = 15 nm corresponds to the surface of
the channel). Calculation conditions: chain length, N = 50; bulk salt
concentration, Csalt = 0.1 M (panel a) or 10−4 M (panel b); polymer
concentration in the bulk, Cpol = 10−3 M, channel radius, R = 15 nm;
substrate surface charge, σsurf = −0.1 |e|·nm−2. Note that the
concentration of the polyelectrolyte is expressed as molar concen-
tration of monomer units.
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due to the fact that the volume element at a given distance from
the surface increases as ∼1 + d/R for a cylinder and as ∼(1 + d/
R)2 for a sphere.
3.3. Conditions that Maximize the Effect of Curvature

on the Amount of Adsorbed Polyelectrolyte. In order to
evaluate the potential experimental relevance of the effect of
surface curvature on polyelectrolyte adsorption, we compared
polyelectrolyte adsorption on highly curved cylindrical nano-
rods and nanochannels (R = 7.5 nm). Figure 5 shows the
results of these calculations for Cpol = 10−2 M (concentrated
polyelectrolyte solution, large chemical potential of polyelec-
trolyte) and Cpol = 10−6 M (diluted polyelectrolyte solution,
small chemical potential of polyelectrolyte). Panels a and b in
Figure 5 show σpol for these two polyelectrolyte concentrations
as color maps as a function of chain length (N) and bulk salt
concentration (Csalt) (the corresponding plots for the channel

are shown in the Supporting Information Figure S2). For Cpol =
10−2 M, σpol increases with the chain length and experiences a
maximum as a function of salt concentration, in agreement with
previous reports1,18,20,21,28,29 This maximum is due the dual role
of ionic strength, which screens both electrostatic repulsions
among polyelectrolyte segments and electrostatic attractions
between the segments and the surface. In the condition of the
maximum, the charge of the polyelectrolyte overcompensates
the charge of the surface (σpol > 0.1 |e|·nm−2). For large salt
concentrations, the polyelectrolyte completely desorbs from the
surface. The critical salt concentration for which desorption
occurs increases for increasing chain length, in line with
previous simulation results.18 Panels c and d in Figure 5 show
the difference between the amount of polyelectrolyte adsorbed
on the rod and that on the channel, σpol

rod − σpol
channel. Panels e and

f show the ratio between these two quantities (we actually plot
the logarithm of the ratio, log10(σpol

rod/σpol
channel)). For Cpol = 0.01

M (panels c and e), we observe that in the region where charge
overcompensation occurs, the amount of adsorbed polyelec-
trolyte on the rod is predicted to be larger than that on the
channel (σpol

rod > σpol
channel, red regions in panels c−f). The

maximum value of σpol
rod − σpol

channel is ∼0.011 |e|·nm−2, which is 1
order of magnitude smaller than the surface charge density
(σsurf = −0.1 |e|·nm−2). On the other hand, in these conditions,
the ratio σpol

rod/σpol
channel is close to 1 (i.e., log10σpol

rod/σpol
channel close to

zero, see scale of Figure 5e), indicating that large composition
deviations with surface curvature are unlikely to occur in the
overcompensation regime. For Cpol = 10−6 M, there is a region
where charge undercompensation occurs and σpol

rod > σpol
channel

(blue region in panels c and d and green region in panels e and
f). The maximum absolute difference in this region is ∼0.03 |e|·
nm2 but because the amount of adsorbed polyelectrolyte is
small, the relative ratio σpol

rod/σpol
channel can be significantly smaller

than one (log10 σpol
rod/σpol

channel < 0, see scale in Figure 5f). In other
words, large composition changes with surface curvature can
occur in the charge undercompensation scenario but at the cost
of having a small polyelectrolyte coverage. We have also studied
the effect of doubling the native surface charge, σsurf, which
roughly doubles the absolute value of σpol

rod − σpol
channel, but have

little qualitative effect on the relative ratios σpol
rod/σpol

channel (see
Figure 6).

4. CONCLUSIONS
We reported on the mechanisms of modulation of polyelec-
trolyte adsorption by surface curvature. We show that
increasing the curvature of the surface can lead to
polyelectrolyte adsorption or desorption depending on the
type of curvature (convex or concave) and whether the initial
charge of the surface is over- or undercompensated by the
polyelectrolyte. It is important to mention that our theoretical
method have approximations that may affect our quantitative
results; however, we believe that our explanation of the effect of
surface curvature on polyelectrolyte adsorption is a general
result that will qualitatively hold independently of these
approximations. Regarding the approximations, our theory is
mean-field but the fact that we explicitly consider the
conformations, shape, and distribution of volume and charge
of the polyelectrolyte (see derivation of the theory in methods
section) introduces correlations into the distribution of the
charges of the polyelectrolyte. These correlations allow our
theory to capture some key aspects related to polyelectrolyte
adsorption, such as the possibility of charge overcompensation,
the nonmonotonic effect of ionic strength on the amount of

Figure 4. Same as Figure 1 but for polyelectrolyte adsorption on
negatively charged cylindrical nanorods (panels a,b) or spherical
nanoparticles (panels c,d) of radius R. The bulk concentrations of the
polyelectrolyte (Cpol) and salt (Csalt) are indicated in the plots.
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adsorbed polyelectrolyte (in the absence of additional non-
electrostatic interactions), and the increase of the critical ionic
strength for desorption with the chain length of the
polyelectrolyte. Interestingly, the nonmonotonic effect of
ionic strength on the amount of adsorbed polyelectrolyte was
previously observed in simulations18 and experiments,1,28,29 but
it is not predicted by many other mean-field approaches.18,30,31

Another approximation involved in the present work is
neglecting the end effects for nanochannels and nanorods
(i.e., considering infinitely long channels and rods). This
approximation results from the fact that we only allow
inhomogeneities in the direction normal to the surface.
Neglecting the end effect will be a good approximation for
systems with very large aspect ratios (such as ion-track etched
nanochannels in polymer membranes that have aspect ratios of
100−100032). On the other hand, systems with small aspect
ratios will require considering inhomogeneities in two or more
coordinates33,34 and will be addressed in future work.

We show that the differences in the amount of adsorbed
polyelectrolytes between surfaces of different types of curvature
are in general <30% of the initial surface charge (σsurf). We thus
believe that the effect of curvature on polyelectrolyte
adsorption will be not be critical in most applications involving
nanoobjects with only one type and one radius of curvature
(e.g. spherical nanoparticles or cylindrical nanochannels).
However, our results gain importance when different types or
radii of curvature coexist within the same system, such as in
polyelectrolyte adsorption on short nanorods (which have
spherical and cylindrical curvature in the same particle)3 or
conical nanochannels (where the radii of curvature at the tip
and base can be very different).2 In such cases, our results can
help to identify the conditions to reduce the inhomogeneity of
the polyelectrolyte coverage on regions of different curvature,
or even more interesting, to introduce patches of different
polyelectrolyte composition by taking advantage of the local
curvature.

Figure 5. (a,b) Color maps of the charge density of polyelectrolytes adsorbed on the surface of a cylindrical rod (R = 7.5 nm) as a function of bulk
salt concentration (Csalt) and chain length (N) for Cpol = 0.01 M (panel a) and Cpol = 10−6 M (panel b). Note that σ > 0.1 |e|·nm−2 (red regions in
the plots) indicates charge overcompensation. (c,d) Color maps of the difference of the charge density of polyelectrolytes adsorbed on a rod (σpol

rod)
and that of polyelectrolytes adsorbed on a cylindrical nanochannel (σpol

channel) of the same radius and in the same conditions. (e,f) Color maps of the
logarithm of the ratio of the charge density of polyelectrolytes adsorbed on a rod to that of polyelectrolytes adsorbed on a cylindrical nanochannel.
Note that in this scale, a value of 1 indicates σpol

rod = 10·σpol
channel and a value of −1 indicates σpolrod = σpol

channel/10. The calculations correspond to a radius of
curvature R = 7.5 nm and a surface charge of the substrate, σsurf = −0.1 |e|·nm−2.

Figure 6. Same as Figure 5 for σsurf = −0.2 |e|·nm−2.
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