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ABSTRACT: The reversible control of the graphene Dirac
point using external chemical stimuli is of major interest in the
development of advanced electronic devices such as sensors
and smart logic gates. Here, we report the coupling of
chemoresponsive polymer brushes to reduced graphene oxide
(rGO)-based field-effect transistors to modulate the graphene
Dirac point in the presence of specific divalent cations.
Poly[2-(methacryloyloxy)ethyl] phosphate (PMEP) brushes
were grown on the transistor channel by atom transfer radical polymerization initiated from amine-pyrene linkers noncovalently
attached to rGO surfaces. Our results show an increase in the Dirac point voltage due to electrostatic gating effects upon the
specific binding of Ca2+ and Mg2+ to the PMEP brushes. We demonstrate that the electrostatic gating is reversibly controlled by
the charge density of the polymer brushes, which depends on the divalent cation concentration. Moreover, a theoretical
formalism based on the Grahame equation and a Langmuir-type binding isotherm is presented to obtain the PMEP−cation
association constant from the experimental data.

■ INTRODUCTION

Graphene, a two-dimensional semiconducting material, is one
of the most promising materials for post-silicon electronics due
to its outstanding physical and electronic properties.1−3 Due to
its great sensitivity, graphene can be used as the chemo-to-
electrical signal transducing material in field-effect transistors
(FETs) for the generation of high-performance responsive
devices, such as advanced sensors and smart logic gates.4−7 For
these applications, the reversible modulation of the graphene
electronic properties (i.e., the doping level) by a specific
external (bio)chemical stimulus represents a key feature.8,9

The chemoelectrical signal transduction in graphene FETs is
based on various mechanisms, including charge transfer, charge
scattering, and capacitive and electrostatic field effects.10

Among them, the electrostatic field effect (also referred to as
electrostatic gating) is widely regarded as the most reliable
sensing mechanism11 and consists of the modulation of the
Fermi level by means of an external electric field, for example,
the local electric field induced by the adsorption of charged
macromolecules.12,13 The modulation of the Fermi level by
electrostatic gating is observed as a shift in the Dirac point
voltage.
To confer specificity to the transducer, recognition elements

need to be anchored on the graphene surface. For instance, the
use of monoclonal antibodies or enzymes as recognition
elements has led to FET sensors with low limits of detection
and high sensitivity.14−17 Unfortunately, the biomolecule

activity is affected by changes in temperature, pH, ionic
strength, and the presence of inhibitors. Furthermore,
irreversible denaturation of the biomolecule structure with
complete loss of its functional activity can occur in harsh
conditions.18 This issue is an important limitation for the
development of FET devices for sensing applications.19 To
solve this problem, synthetic and robust “recognition
elements” anchored on the transducer surface should be used.
Regarding the electrostatic gating sensing mechanism, the

synthetic receptors have to display controllable charge density
as a function of specific target concentration and be located
directly onto graphene. In this sense, chemoresponsive
polyelectrolytes seem to be an ideal “recognition element”
because they display high charge density that is controllable via
chemical means.20,21 Hence, the use of polymer brushes22,23 is
an attractive alternative to generate synthetic and robust
responsive interfaces24−31 for FET sensing devices.32−35 As an
example, Hess et al.35 reported the covalent functionalization
of graphene with polymer brushes containing weak cation
monomer units (N,N-dimethylaminoethyl methacrylate,
DMAEMA). Due to the polymer brush’s nature, the pH
sensing range of the graphene FETs has been modified,
enhancing the enzymatic detection of acetylcholine.35 Since
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graphene FETs present the inherent property of sensing pH
changes,36 the DMAEMA monomer units do not confer on the
graphene FETs a new recognition function, but they act as an
enhancer of the one already present. Therefore, the use of
stimuli-responsive polyelectrolytes to confer on the graphene
interface a new selective interaction is still a challenging task.
In this regard, polymer brushes containing phosphate
monomer units turn out to be a promising system to be
studied because on the one hand, they present high charge
density, and on the other hand, they can form strong
complexes with some divalent cations (e.g., Ca2+ and
Mg2+).37,38

In this work, we report the polymerization of poly[2-
(methacryloyloxy)ethyl] phosphate (PMEP) brushes on
reduced graphene oxide (rGO) FETs to confer on them a
cation selective response (Ca2+ and Mg2+). The growth of
responsive PMEP polymer brushes was accomplished via
surface-initiated atom transfer radical polymerization (SI-
ATRP), a powerful approach to tune/adapt the chemical and
physical properties of surfaces.39−41 Surface modification with
PMEP brushes was characterized by X-ray photoelectron
spectroscopy (XPS), ellipsometry, atomic force microscopy
(AFM), and contact angle goniometry. Then, the field-effect
properties of the PMEP-modified graphene transistors, in
particular the Dirac point voltage, were studied in the presence
of different types of cations. Finally, a theoretical formalism
was introduced to obtain the PMEP−cation association
constant from the experimental values of the Dirac point
voltage at different Ca2+ concentrations. Our results show a
strong influence of the PMEP brushes on the rGO FET
response provided that the presence of divalent ions Ca2+ and
Mg2+ promotes significant changes in the Dirac point of
graphene. We believe that these results further broaden the
scope of action of polymer brushes to emerging technological
areas, namely, graphene-based field-effect transistors.

■ EXPERIMENTAL SECTION
Materials. Interdigitated microelectrodes (ED-IDA1-Au) as well

as an electrochemical batch cell were obtained from Micrux
Technologies (Oviedo, Spain). A concentrated graphene oxide
solution was kindly supplied by Prof. Josef Breu’s laboratory
(University of Bayreuth, Germany). Anhydrous N,N-dimethylforma-
mide (99.8%), hydrazine monohydrate (99%), (3-aminopropyl)-
triethoxysilane (97%), 1-amine pyrene (97%), α-bromoisobutyryl
bromide (98%), triethylamine (99%), 2,2′-bipyridyl (99%), CuBr2
(99.999%), and 2-(methacryloyloxy)ethyl phosphate (referred to as
MEP, 90%) were purchased from Sigma-Aldrich. THF (PA) was
purchased from Anedra S.A. This solvent was dried by refluxing in the
presence of sodium (Aldrich, 99.8%) and benzophenone (Aldrich,
99%) until the observation of purple coloration and then distilled.
Graphene-Based Transistor Fabrication. The reduced gra-

phene oxide field-effect transistors (rGO FETs) were prepared from
interdigitated electrodes as we described in previous works.16,42

Poly[2-(methacryloyloxy)ethyl] phosphate (PMEP) Brush
Growth on the Transistor Channel. PMEP brushes were obtained
by surface-initiated atom transfer radical polymerization (SI-ATRP)
on initiator-modified rGO-FETs. The functionalization involved three
synthetic steps: (1) noncovalent functionalization of the graphene
surface with amine-pyrene, (2) acylation of amine-pyrene groups with
α-bromoisobutyryl bromide to prepare the surface-confined ATRP
initiator, and (3) ATRP of 2-(methacryloyloxy)ethyl phosphate
(MEP).
1. rGO-FET modification with amine-pyrene: rGO-FET chips were

incubated in 2 mM amine-pyrene solution prepared in dimethylfor-
mamide (DMF) for 4 h, rinsed with DMF and Milli-Q water, and
finally dried with N2.

2. Acylation of amine-modified rGO-FETs with α-bromoisobutyryl
bromide to obtain ATRP initiator sites:43 amine-modified rGO-FET
substrates were immersed in an Erlenmeyer containing 40 mL of dry
THF and 2 mL of triethylamine under N2. After this, the reaction
solution was placed in an ice bath, and 2 mL of α-bromoisobutyryl
bromide was added slowly using a pressure-equalizing dropping
funnel. After 3 h, the transistors were removed and washed with
acetone, ethanol, and Milli-Q water.

3. Growth of PMEP brushes from immobilized initiators: ATRP
was carried out according to the method described by Zhou et al.44

MEP (12.5 g) was dissolved in 20 mL of water and neutralized with
NaOH solution to produce the disodium salt. Then, 0.4 g of 2,2′-
bipyridyl and 0.011 g of CuBr2 were added, and the solution was
degassed by N2 bubbling for 1 h. Then, 0.144 g of CuBr was added,
and the mixture was left for 15 min under N2. Simultaneously, ATRP
initiator-modified rGO-FETs were sealed in Schlenk tubes and
degassed through vacuum/N2 cycles. Then, the reaction mixture was
syringed into these Schlenk tubes, adding enough to cover the
samples completely. The mixture was left overnight under N2 at 60
°C, and then the substrates were removed, washed with deionized
water, and dried with N2.

Field-Effect Transistor Characterization. Liquid-gated gra-
phene FETs were measured using the batch cell from Micrux
Technologies. Electrical measurements were performed by applying a
100 mV source−drain bias and sweeping the gate potential (Vg) while
monitoring the current between the drain and the source (Ids) using a
Teq4 bipotensiostat (nanoTeq, Buenos Aires, Argentina). A Ag/AgCl
reference electrode from BASi (Indiana, USA) was used as a gate
electrode.

X-ray Photoelectron Spectroscopy. An SPECS SAGE HR 100
X-ray photoelectron (XPS) spectrometer was used. A Mg Kα (1253.6
eV) X-ray source was employed operating at 12.5 kV and 10 mA.
Quantitative analysis of spectra was carried out by using the Casa XPS
software, employing Shirley baselines and Gaussian\Lorentzian
functions. Surface-charging effects were corrected by setting the
binding energy of the main component of the C1s core level at 284.6
eV.

Contact Angle Goniometry. A Rame−́Hart contact angle system
(model 290) at 25 °C was used using 1 μL drops. The average contact
angle value was obtained at three different locations of the same
sample.

Atomic Force Microscopy (AFM). A Veeco Multimode AFM
connected to a NanoScope V controller was used to image the
polymer brushes. AFM measurements were performed in tapping
mode with a sample scan size of 2.5 μm × 2.5 μm. Nonconductive
sharpened silicon nitride probes (Bruker, K = 0.12 Nm−1) were used.

Ellipsometry. For the PMEP film thickness estimation, an alpha-
SE ellipsometer from Woollam Co. Inc. was used. The ellipsometric
measurements were conducted using a wavelength range from 550 to
900 nm and incidence angle of 70° in high-precision mode. A
multilayer model taking into account the layers of different materials
(i.e., APTES, rGO, amine-pyrene, and PMEP) was used. All the layers
were treated as Cauchy materials having the following wavelength-
dependent refractive index: n A( ) B C

2 4λ = + +
λ λ

, where A, B, and C

are the fitting coefficients and λ is the wavelength. To obtain the A, B,
and C coefficients for each layer, ellipsometric measurements were
performed after each modification step and fitted with the
CompleteEASE software.

■ RESULTS AND DISCUSSION

A set of interdigitated gold electrodes as source and drain
electrodes, connected via a very narrow channel (10 μm) of
rGO, was used for the preparation of the transistors (Figure
1a). The interdigitated arrangement together with the liquid
gate configuration leads to FETs with an extremely high
transconductance and a charge carrier mobility of 30 and 15
cm2 V−1 s−1 for holes and electrons, respectively, as described
in previous works.16,42 Since the covalent attachment of
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molecules on graphene disrupts the π-conjugation struc-
ture,45−47 a polymerization method that does not alter the
semiconducting properties of graphene needs to be chosen. It
has been shown that the self-assembly of aromatic compounds
on graphene surfaces via π−π stacking has no deleterious
effects on the exceptional electronic quality of this material.48

With this in mind, we propose an SI-ATRP approach initiated
from an amine-pyrene linker previously assembled on the rGO
surface (Figure 1b).
The surface functionalization was confirmed using X-ray

photoelectron spectroscopy (XPS). The first two spectra in
Figure 2a show the successful reduction of GO to rGO using
hydrazine as the intensity of the C−O peak decreases in the
presence of signals corresponding to other functional groups
on the rGO surface. After the PMEP modification, the signal
corresponding to OCO groups increased in intensity,
which is consistent with the additional ester groups of PMEP.
Further, the effective functionalization of the rGO surface by
PMEP is evidenced by the presence of P 2s and P 2p XPS
signals (Figure 2b). In another experiment, Ca and P spectra
were recorded after incubation of a PMEP-modified rGO in 1
mM CaCl2 and subsequent rinsing with deionized water to
remove the salt excess. The resulting Ca/P ratio was
determined to be 0.4 (Figure 2c) instead of 1. We attribute
this observation to two plausible effects: (i) the presence of
counterion gradients within the film or (ii) the coexistence of
mono- and dibasic phosphate species, instead of the sole
presence of dibasic species in the brush layer. Surface
modification was also proven by contact angle measurements
(see Figure S1 in the Supporting Information). Further, the

PMEP thickness was studied by ellipsometry (Figure S2),
showing a film thickness of 19 ± 3 nm. This value is in
agreement with the thickness of PMEP brushes polymerized
on gold and silicon wafers using also the ATRP approach.44

The AFM topography image of an rGO substrate modified
with PMEP (Figure 1c) reveals a continuous and uniform film
with a roughness (in terms of the root mean square height) of
3.3 nm (additional scanning electron microscopy character-
ization is included in Supporting Information, Figure S3).
To assess the chemoresponsive properties of the PMEP

brushes, the contact angle was measured with solutions
containing monovalent (K+) or divalent cations (Ca2+). Figure
3a shows contact angles of PMEP brushes prior to and after
coordination with Ca2+. A marked increase in hydrophobicity
was observed in the presence of the divalent cation, which is a
result of a surface charge density decrease due to the PMEP
coordination with Ca2+ ions.38

Sweeping the gate potential (Vg) while monitoring the
current between the drain and the source (Ids) results in
transfer characteristics with a minimum conductance, corre-
sponding to the minimum concentration of charge carriers (the
so-called Dirac point). The left and right branches from this
charge neutrality point represent the hole and electron
conductivity regimes, respectively.49 We should note that
after the MEP polymerization, a slight decrease in the FET
transconductance was observed (Figure S4), which could be
attributed to desorption of the rGO sheets not so strongly
attached to the substrate surface. The negative charge of the
PMEP brushes induces an electric field that generates positive
charges in the graphene channel (i.e., holes into the valence
band) and shifts the Fermi level below the Dirac point (Figure
3b). When Ca2+ ions bind to the phosphate groups in the
polymer brushes, the surface charge is neutralized, and the
transfer characteristics shift to more negative gate values. This

Figure 1. (a) Illustration of the liquid-gated rGO FET, the
interdigitated source and drain electrodes, and SEM image of the
rGO-functionalized channel. (b) Scheme of rGO FET functionaliza-
tion with PMEP brushes by atom transfer radical polymerization
(ATRP). (c) Topography image of PMEP brushes obtained by
atomic force microscopy (AFM).

Figure 2. (a) XPS spectra in the C 1s binding energy region for
graphene oxide (GO), reduced graphene oxide (rGO), and rGO
functionalized with PMEP brushes (rGO_PMEP). (b) Comparison
of the survey XPS spectra of rGO (red) and PMEP-functionalized
rGO (blue). (c) Ca 2p (left) and P 2p (right) energy regions of
rGO_PMEP after incubation in Ca2+.
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phenomenon can be observed by comparing the transfer
characteristics in the presence and in the absence of Ca+2

(Figure 3c). For the PMEP-modified FET, the Dirac point (Vi)
clearly shifts to more negative values upon binding of the
divalent cations (right), whereas no signal is observed in the
control measurement using nonmodified rGO FETs (left).
Figure 4a shows that the binding of the analyte to the

polymer brushes can be reversed by complexing the Ca2+ ions
using 10 mM EDTA for 20 min. This treatment regenerates
the negative charge of the brush and shifts the Dirac point
(left) and the contact angle (right) back to the dissociated
PMEP values. On the other hand, in the case of Ca2+ binding,
we have observed that the signal reaches a stable value after 1
min exposure. Measuring the Dirac point shift (ΔVi) at
different concentrations of Ca2+ gives a response curve with a
Langmuir-like adsorption behavior, where the polymer brush
reaches a binding saturation close to 10 mM Ca+2 (Figure 4b).
According to the experimental data taken from the linear
regime, the sensitivity of the PMEP-modified FET device is 17
mV per decade. For the sake of comparison, current Ca2+

sensors employing more sophisticated sensing configurations
exhibit sensitivities close to 25 mV per decade. In principle, we
assumed that all the monomer units are exposed to Ca2+ ions.
In previous studies, it has been demonstrated that in the case
of thin polymer brushes (thickness <100 nm), counterions
fully penetrate the inner environment of the polymer
layer.50−53 In our experiments, the thickness of the polymer

brushes is ∼20 nm; hence, we can infer that cations penetrate
through the whole thickness of the macromolecular layer.
A formalism based on the Langmuir−Freundlich binding

isotherm and the Grahame equation was proposed to obtain
the degree of PMEP coordination (i.e., the surface coverage)
from the change in the Dirac point (ΔVi). The modification of
the graphene surface with very thin polymer brushes facilitates
the use and application of this isotherm to describe the binding
process. However, we recognize that above a critical thickness
value, this isotherm is no longer applicable and a more detailed
analysis would be needed to describe the experiments.
The binding equilibrium of Ca2+ to the phosphate groups of

the polymer brushes can be described as follows

K(RO PO ) Ca (RO PO Ca),3
2 2

3 1− + = −− +

K(RO HPO ) Ca (RO HPO Ca ),3
2

3 2− + = −− + +

K(RO H PO ) Ca (RO H PO Ca ),2 3
2

2 3
2

3− + = −+ +

where parentheses are used to designate surface species and K1,
K2, and K3 represent the respective equilibrium constants,
which are described in the Supporting Information. As we
worked at pH 10,54 [(RO−HPO3

−1)] ≈ [(RO−H2PO3)] ≈ 0,
and it is possible to assume that the divalent cation
coordination is described by the K1 equilibrium. Therefore,
the PMEP-Ca surface coverage expression (θ) simplifies to

K
K

( Ca )
1 ( Ca )

m

m
1

2
0

1
2

0
θ =

[ ]
+ [ ]

+

+
(1)

where [Ca2+]0 is the concentration of Ca2+ close to the PMEP
brush surface (see the Supporting Information for [Ca2+]0
calculation) and m is called the heterogeneity index. This
adsorption model takes into account the heterogeneity of the
adsorption energy of the binding sites and the lateral ligand
interactions where m can take values ≤1.55

Figure 3. (a) Contact angle of rGO surfaces modified with PMEP
brushes and measured with solutions containing monovalent and
divalent cations: 100 mM KCl (left) and 33 mM CaCl2 (right). The
values of the salt concentrations were chosen to keep the electrostatic
screening length constant. (b) Scheme of the PMEP brushes and the
Fermi level before and after the binding of Ca2+ ions. (c) Transfer
characteristics for bare rGO FET (left) and rGO FET functionalized
with PMEP (right) in the presence of 100 mM KCl (red) and 33 mM
CaCl2 (blue).

Figure 4. (a) Reversibility of the Dirac point (left) and contact angle
(right) in the presence and absence of Ca2+. Between consecutive
measurements, the substrates were incubated in EDTA. (b)
Langmuir−Freundlich binding isotherm showing the surface coverage
of PMEP coordinated by Ca2+ ions. The circles are the experimental
results, and the solid line is the fitting using the model described in
the text.
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The surface charge density (σ) is a function of the
concentration of phosphate charged groups and can be
expressed as follows:

2e RO PO3
2σ = [ − ]− −

(2)

As phosphate groups are neutralized by the coordination to
Ca2+, the surface coverage can be written in terms of the
surface charge density: θ = (σi − σ)/σi, where σi is the surface
charge density of completely dissociated PMEP (i.e., in the
absence of Ca2+).
On the other hand, the Grahame equation relates the surface

charge density to the electrostatic potential at the interface of
the polymer brush (ψs):

i
k
jjj

y
{
zzzkTn

e

kT
8 sinh

20 0
sσ

ψ
= ϵϵ

(3)

The relation can be simplified for low ψs to σ = ϵϵ0ψs/λD where
λD is the Debye length. As the Dirac point (Vi) is proportional
to the electrostatic potential,12 the surface coverage can finally
be expressed as follows

V V/i i ,maxθ = Δ Δ (4)

where ΔVi, max is the change of the Dirac point obtained upon
saturation of Ca2+.
The dependence of the surface coverage (calculated using eq

4) as a function of [Ca2+]0 was fitted with eq 1 to determine K1
and m. Values corresponding to K1 = 301 ± 42 M−1 and m = 1
± 0.2 were obtained. These values are consistent with
previously reported association constants of calcium with
other (RO−PO3

2−) molecules such as phosphatidylinositol
(10 M−1) and phosphatidylinositol 4,5-bisphosphate (500
M−1).56 Moreover, the value obtained for m evidences a very
low degree of heterogeneity of the binding sites.
It was also observed that the transconductance of the

PMEP-modified rGO FET diminishes when Ca2+ binds to the
polymer brush with respect to measurements in KCl (Figure
S5). This effect may be attributed to the collapse of the
polymer brush upon binding of the divalent cation.4,38 A
similar effect was observed for Mg2+. The maximum Dirac
point shift upon binding of Mg2+ ions was found to be −2 mV
(see the Supporting Information for more details). This lower
shift compared to the measurements performed with Ca2+ is
expected since the affinity between phosphate and calcium is
higher than that corresponding to phosphate and magnesi-
um.56,57

■ CONCLUSIONS
In summary, an ion-responsive negatively charged polymer
brush was grown on the graphene surface via atom transfer
radical polymerization (ATRP) of poly[2-(methacryloyloxy)-
ethyl] phosphate (PMEP). The resulting chemoresponsive
graphene-based transistor responds to the presence of the
divalent ions Ca2+ and Mg2+. Our results show a reversible
modulation of the Dirac point voltage (by electrostatic gating
effects) due to the divalent PMEP−cation coordination. The
binding of Ca2+ showed a Langmuir-type binding behavior
with an affinity constant of 301 M−1. This functionalization
approach, initiated from amine-pyrene linkers noncovalently
attached to the rGO surface, represents a powerful tool to
combine functional polymer brushes and rGO-based FETs to
develop chemoresponsive devices with responsive interfacial
architectures. Since our polymerization approach could be

extended to a wide variety of stimuli-responsive monomers, we
believe that these results will have profound implications for
the development of advanced sensors and smart logic gates.
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