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Preface

Polymers at interfaces is a field which has fascinated physicists and chemists
now for nearly half a century, with respect to both basic and applied research.
Polymer brushes refer to polymeric assemblies tethered at one end to a solid
substrate either through covalent attachment or physical adsorption. At suffi-
ciently high grafting density, due to repulsive interactions, the tethered chains
stretch away from the surface into the solvent creating polymer brush structure.
The conceptual origins of polymer brushes can be traced back to the 1950s,
when it was discovered that flocculation could be prevented by grafting poly-
mer chains onto colloidal particles. Over the past decades, developments in
this field led to its valuation as a premier technique for chemical modification
of solid substrates—polymer brushes offer a macromolecular perspective on
the modification of interfacial properties of materials.
The creativity of chemists provided a means for developing a wide variety

of polymer brushes with unprecedented interfacial properties. Most of this
progress stemmed from interdisciplinary work exploiting polymer chemistry
as a key enabler to rationally design polymer interfaces and macromolecular
assemblies entirely from scratch. Properties such as biocompatibility, wetta-
bility, corrosion resistance, friction, affinity to a specific target molecule, or
even electroactivity can bemanipulated bymodifying a substrate with polymer
brushes. Owing to their flexibility to createmacromolecular interfaces in which
chemical composition, thickness, and film architecture can be controlled and
even addressed with nanoscale precision, polymer brushes have found appli-
cations in multiple areas concerning new adhesive materials, protein-resistant
or protein adhesive biosurfaces, chemical gates, microfluidic devices, and drug
delivery platforms, among other examples.
Polymer brushes constitute indeed a remarkable and growing category

within the world of polymer science. A research field where engineering
the integration and combination of macromolecular building blocks at the
nanometer andmolecular level leads to new opportunities for the development
of novel and improved interfacial architectures.



xxii Preface

For several years now, innovative research in polymer brushes is no longer
circumscribed to the realm of polymer science but has begun to enter the
domain of physical chemistry, nanoscience materials science, and biotechnol-
ogy as well. This transformationwas catalyzed by the development of new poly-
merization techniques, which introduced less demanding synthetic strategies
facilitating scientific community-wide access to an expertise so far believed to
be exclusive domain of polymer chemists.
Nowadays, polymer brushes represent a fertile ground to harness the chem-

ical, physical, or biological activity of a myriad of macromolecular components
and put them to work onto a broad variety of surfaces with specific purposes
in mind.
This book covers the most relevant topics in basic research and those having

potential technological applications. We acknowledge the considerable effort
of each of the authors who has made excellent contributions to this book. We
believe they have done a splendid job, and that their work will make this book
a valuable reference and teaching resource.
Last, but not least, we hope this book will contribute to give the reader a feel-

ing of the enormous potential, themultiple applications, and themany up-and-
coming trends behind the development of macromolecular interfaces based on
the use of polymer brushes.

Omar Azzaroni and Igal Szleifer
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Preface

Polymers at interfaces is a field which has fascinated physicists and chemists
now for nearly half a century, with respect to both basic and applied research.
Polymer brushes refer to polymeric assemblies tethered at one end to a solid
substrate either through covalent attachment or physical adsorption. At suffi-
ciently high grafting density, due to repulsive interactions, the tethered chains
stretch away from the surface into the solvent creating polymer brush structure.
The conceptual origins of polymer brushes can be traced back to the 1950s,
when it was discovered that flocculation could be prevented by grafting poly-
mer chains onto colloidal particles. Over the past decades, developments in
this field led to its valuation as a premier technique for chemical modification
of solid substrates—polymer brushes offer a macromolecular perspective on
the modification of interfacial properties of materials.
The creativity of chemists provided a means for developing a wide variety

of polymer brushes with unprecedented interfacial properties. Most of this
progress stemmed from interdisciplinary work exploiting polymer chemistry
as a key enabler to rationally design polymer interfaces and macromolecular
assemblies entirely from scratch. Properties such as biocompatibility, wetta-
bility, corrosion resistance, friction, affinity to a specific target molecule, or
even electroactivity can bemanipulated bymodifying a substrate with polymer
brushes. Owing to their flexibility to createmacromolecular interfaces in which
chemical composition, thickness, and film architecture can be controlled and
even addressed with nanoscale precision, polymer brushes have found appli-
cations in multiple areas concerning new adhesive materials, protein-resistant
or protein adhesive biosurfaces, chemical gates, microfluidic devices, and drug
delivery platforms, among other examples.
Polymer brushes constitute indeed a remarkable and growing category

within the world of polymer science. A research field where engineering
the integration and combination of macromolecular building blocks at the
nanometer andmolecular level leads to new opportunities for the development
of novel and improved interfacial architectures.



xxii Preface

For several years now, innovative research in polymer brushes is no longer
circumscribed to the realm of polymer science but has begun to enter the
domain of physical chemistry, nanoscience materials science, and biotechnol-
ogy as well. This transformationwas catalyzed by the development of new poly-
merization techniques, which introduced less demanding synthetic strategies
facilitating scientific community-wide access to an expertise so far believed to
be exclusive domain of polymer chemists.
Nowadays, polymer brushes represent a fertile ground to harness the chem-

ical, physical, or biological activity of a myriad of macromolecular components
and put them to work onto a broad variety of surfaces with specific purposes
in mind.
This book covers the most relevant topics in basic research and those having

potential technological applications. We acknowledge the considerable effort
of each of the authors who has made excellent contributions to this book. We
believe they have done a splendid job, and that their work will make this book
a valuable reference and teaching resource.
Last, but not least, we hope this book will contribute to give the reader a feel-

ing of the enormous potential, themultiple applications, and themany up-and-
coming trends behind the development of macromolecular interfaces based on
the use of polymer brushes.

Omar Azzaroni and Igal Szleifer
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