Mass and charge transport in highly mesostructured polyelectrolyte/electroactive-surfactant multilayer films

Esteban Piccininia, Graciela A. Gonzálezb, Omar Azzaronia,⇑ Fernando Battaglinib,⇑

a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) –Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata – CONICET, Suc. 4, CC 16, La Plata, Argentina
b INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – CONICET, Ciudad Universitaria, Pabellón 2 C1428EAH, Buenos Aires, Argentina

HIGHLIGHTS
• Electrochemical responsive films display well-defined mesostructure.
• The electroactive films are highly rigid and poorly hydrated.
• Film composition, redox centers concentration and electroactivity can be tuned.
• The system undergoes efficient electron transfer with negligible volume change.

ARTICLE INFO
Article history:
Received 15 May 2020
Revised 10 July 2020
Accepted 11 July 2020
Available online 24 July 2020

Keywords:
Spatially addressed redox sites
Layer-by-layer
Mesostructured films
Electrochemical quartz crystal microbalance
Rigid film
Electron transfer
Mass transfer

ABSTRACT
Hypothesis: Dimensionally stable electroactive films displaying spatially addressed redox sites is still a challenging goal due to gel-like structure. Polyelectrolyte and surfactants can yield highly mesostructured films using simple buildup strategies as layer-by-layer. The use of redox modified surfactants is expected to introduce order and an electroactive response in thin films.

Experiments: The assembly of polyacrylic acid and different combinations of redox-modified and unmodified hexadecyltrimethylammonium bromide yields highly structured and electroactive thin films. The growth, viscoelastic properties, mass, and electron transport of these films were studied by combining electrochemical and quartz crystal balance with dissipation experiments.

Findings: Our results show that the films are highly rigid and poorly hydrated. The mass and charge transport reveal that the ingress (egress) of the counter ions during the electrochemical oxidation (reduction) is accompanied with a small amount of water, which is close to their hydration sphere. Thus, the generated mesostructured films present an efficient charge transport with negligible changes in their structures during the electron transfer process. The control over the meso-organization and its stability represents a promising tool in the construction of devices where the vectorial transfer of electrons, or ions, is required.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Electroactive thin films represent a crucial element in the construction of devices devoted to energy conversion, actuators, responsive materials, molecular electronics, and clinical diagnostics, among others [1–8]. In such interfaces, the precise control of the molecular components is of fundamental importance for the achievement of novel or optimized functional properties where the vectorial transfer of electrons or ions is required [9–13]. A prerequisite for the construction of mesostructured interfaces is the development of methods for integrating molecular components with strict control of their organization and alignment over the whole architecture. Research efforts on this matter are often referred to as “nanoarchitectonics”, a term popularized by Ariga and coworkers [14–17]. Although there are many strategies, the construction of stable films displaying meso-organized functional sites with scalable and easily implementable approaches for mass production is still a challenging goal. In this context, the layer-by-layer (LbL) technique, which does not require complicated experimental setup, seems to be of great interest as it represents a versatile and straightforward approach to control the vertical composition of thin films [18–21]. Briefly, the LbL technique is based on alternate adsorption of oppositely charged nanocomponents, for instance, polycations and polyanions, and constitutes a well-established nanoconstruction method [22–25]. However, despite its intrinsic simplicity and versatility, one of the most significant limitations of LbL is its scarce control over the meso-organization of the components inside the film.

Exhaustive studies reported by several authors demonstrate that (A/B)n polyelectrolyte films present a low degree of organization of the components across the film [26–29]. This ill-defined meso- and nano-structure is evidenced by the lack of Bragg peaks when the material is characterized by X-ray reflectometry (XRR) or neutron reflectometry (NR) [30], which is explained in terms of interpenetration between polyelectrolyte layers. This effect represents a limitation to the application of the LbL technique when the precise placement and alignment of functional groups respect to the substrate is required. Different research groups explored new approaches to confer true mesoscale organization to LbL films with the purpose to overcome this issue. For example, Jonas and coworkers reported that the interpenetration between neighboring layers in multilayer assemblies can be reduced by using polyelectrolytes bearing mesogenic groups [30,31]. More recently, it has been demonstrated that the LbL assembly of polyelectrolytes and amphiphilic molecules, as mesogenic agents, is a straightforward alternative to promote meso-organization into these thin films [10,12,32,33]. Although the use of surfactants as structure-directing agents has been successfully employed for the construction of inorganic mesoporous films [34–36] or mesostructured surfactant-polymer “complex-salts” [37–50], its application in the preparation of mesostructured films proceeds in non-aqueous solvents (e.g.: chloroform, DMF), on the contrary, the LbL process takes place entirely in aqueous solutions – which is more attractive for sustainable industrial applications [6].

Since the polyelectrolyte-surfactants assemblies prepared by the complex-salts and LbL techniques can be made with the same building-blocks, it worth highlighting some essential differences between them and their resulting films: (i) In general, solution casting of polyelectrolyte-surfactant complex-salts proceeds in non-aqueous solvents (e.g.: chloroform, DMF), on the contrary, the LbL process takes place entirely in aqueous solutions – which is more attractive for sustainable industrial applications [6]; (ii) It was demonstrated that the polyelectrolyte-surfactant LbL technique can lead to mesoscale domains with specific orientation with respect to the substrate [10,32,33], a feature that is essential for a number of applications where a vectorial transfer of electrons or ions is required; (iii) For the LbL technique, the film thickness is easily controlled with nanometric precision by the number of adsorption steps, while the complex-salts approach presents a lower control over the film thickness since the drop casting technique is typically used [45,46]; (iv) LbL allows the adsorption of an additional component (e.g., biomolecules [10], 2D materials [51], among others) in a specific location in between the polyelectrolyte-surfactant layers; this feature that cannot be achieved with the complex-salts approach.

Recently, we established a supramolecular approach for the construction of layer-by-layer assemblies that leads to the generation of mesoscale-organized electroactive films [33]. These assemblies were made from the combination of the hexadecyltrimethylammonium bromide (CTA) and its ferrocenyl derivative (FcCDA), and the polycrylic acid (PAA) (Scheme 1a). With this strategy, the density, and the meso-organization of the redox-centers in the film can be controlled, ranging from a circular hexagonal mesostructure to a hexagonal 2D mesostructure, depending on the composition of the surfactant mixture (Scheme 1b). The stoichiometry of redox and non-redox surfactant in the film directly correlates with the composition of the solution used in the adsorption step. Moreover, GIXS analysis shows that these assemblies retain their structure regardless of its oxidation state, which represents an important feature when the stability of the film must be considered. The present work reports a detailed description of these attractive systems by studying the growth, composition, and viscoelastic properties of these films by quartz crystal microbalance with dissipation (QCM-D). Also, the redox state of the film was changed by cyclic voltammetry, and the charge and mass transport followed combining electrochemical and QCM-D techniques (EQCM-D). Additionally, numerical simulation allows establishing the apparent diffusion coefficient of the redox moieties and its electron transfer rate. Interestingly, these highly mesostructured films present a compact and rigid structure and a low content of water, yielding these systems as solid building block materials for devices involving energy conversion, actuators, molecular electronics, among others.

2. Experimental

2.1. Materials

2-aminoethanol hydrochloride (cysteamine) and hexadecyltrimethylammonium bromide (CTAB) were purchased from Sigma-Aldrich. Polyacrylic acid (Mw 5 kDa) 50 wt% solution was purchased from ACROS Organics. The electroactive cationic surfactant (ferrocenylmethyl)hexadecyltrimethylammonium bromide (FcCDA) was prepared in our laboratory following a protocol reported by Jeffrey Gold and coworkers [52,53]. All the polyelectrolyte and surfactant solutions were prepared with deionized water: 1 mg/ml PAA5kDa (pH 3.7); 2 mM CTAB, 2 mM FcCDAB and CTAB-FcCDAB mixed surfactant solutions presenting a 2 mM total surfactant concentration with the following CTAB molar fractions (XCTAB): 0.9, 0.7 and 0.5. Solutions of 1 mg/ml PAA resulted in a pH value of 3.7; at this condition, the PAA is protonated around 90% [40]. The CTAB and FccDAB solutions were prepared over the critical micelle concentration, 0.98 mM [54] and 0.17 mM [33], respectively (at 25 °C in the absence of salt).

2.2. Layer-by-layer assembly

Modification of gold surfaces with self-assembled cysteamine monolayers were done following a previously reported protocol [55]. Layer-by-layer assemblies made of polycrylic acid and catio-
Nic surfactants were prepared on the thiol modified gold substrates (see Scheme 1a). Each adsorption step was achieved by incubating the substrate in the polyanion or surfactant solution for 10 min, followed by rinsing with deionized water for 10 min. The deposition cycle (n) is defined as the full cycle, including incubation in the polyelectrolyte, the rinse in deionized water, and the subsequent incubation in the surfactant solution followed by a water rinse. Multilayer assemblies of (PAA/surfactants)_n were prepared from 1 mg/ml PAA and CTAB-FcCDAB mixed surfactant solutions with the following CTAB molar fractions (X_{CTAB}): 1, 0.9, 0.7, 0.5 and 0. The resulting multilayer assemblies are referred as (PAA/CTA)_n, (PAA/CTA_{0.9}-FcCDAB_{0.1})_n, (PAA/CTA_{0.7}-FcCDAB_{0.3})_n, (PAA/CTA_{0.5}-FcCDAB_{0.5})_n and (PAA/FcCDAB)_n, respectively.

2.3. Electrochemical measurements.

Cyclic voltammetry (CV) experiments were performed with a TEQ-03 potentiostat from NanoTeq using a three-electrode cell equipped with an Ag/AgCl (3 M NaCl) reference electrode from BASi (Indiana, USA), a platinum wire counter electrode and gold working electrodes with an active area of 0.196 cm² (see Scheme 1b). Unless otherwise stated, electrochemical experiments were performed at room temperature (ca. 22 °C) in 0.1 M NaCl.

2.4. Quartz-crystal microbalance with dissipation monitoring (QCM-D).

The QCM-D experiments were performed by using a Q-Sense E1 (Biolin Scientific, Sweden). For all measurements, QCM 301 gold sensors and a flow module cell were used, and the surfactant and polyelectrolyte solutions were injected manually. Frequency and dissipation were recorded at several odd overtones, and frequency shifts were normalized by division with the overtone number. Frequency and dissipation values were obtained after each adsorption step with the interface immersed in deionized water.

For the film hydration estimation, the as-prepared (PAA/surfactant)_n films were dehydrated with dry nitrogen flow (0% RH) for 20 min and then exposed to a nitrogen atmosphere with a high content of water (95% RH) for 10 min. For these experiments, the Q-Sense flow cell was used.
For the simultaneous QCM-D and electrochemistry measurements (EQCM-D), a QEM 401 Qsense electrochemistry module (Biolin Scientific, Sweden) was used. This cell is equipped with a low-leak reference electrode, a platinum wire counter electrode, and the QXS 301 gold sensors as working electrodes. The EQCM-D experiments were carried out to monitor the frequency and the dissipation changes in the electroactive films during their oxidation and reduction [56–60].

The concentration of redox surfactant in the film for each system was estimated using the QCM-D results by considering the surfactant and PAA concentrations constant throughout the film. The estimation was addressed as follows: i) Based on the mass density of the film components, PAA (0.8 g/cm³) and CTA (1.4 g/cm³), and considering that the density of the surfactant FcCDA is equal to that of the CTA, the bulk density of the film (ρfilm) was estimated: ρfilm = ρsurf/C3surf + ρPAA/C3PAA. ii) The thickness of the films (d) was calculated as d = (d/ρfilm). iii) Since the Sauerbrey equation is a good approximation for our films, the surfactant surface coverage (Γsurf) is obtained by QCM-D and CTA:FcCDA ratio in the assembly can be assumed to be equal to that of the solution (XFcCDA/CTA) [33]. Therefore, the concentration of FcCDA in the film is estimated: CFcCDA = Γsurf × XFcCDA/d.

The experimental noise for the liquid QCM-D experiments was typically below 2 ng/cm², and –ΔD/Δf was lower than 0.2 × 10⁻⁶ Hz⁻¹ during the whole layer-by-layer construction. Therefore, it is expected surface mass estimation error below 5% by using the Sauerbrey equation.

2.5. Numerical model.

Finite-element software (Comsol Multiphysics 3.4) was used to simulate the cyclic voltammetry experiments and the concentration profiles. The software was executed in a PC Intel (R) Core (TM) i5-3330 CPU@3.00 GHz – 8 GB RAM – 64-bit Operating System, resolving the model with 43,499 degrees of freedom and 9080 nodes, the mesh was refined close to the electrode where 7330 elements were used. The experimental system was modeled solving Poisson and Fick equations using the finite-element software previously described. The space dimension was set to 2D, and the Poisson and Fick equations using the finite-element software presented in the previous section. For all the assemblies prepared in this work, we obtained that the relationship between the dissipation and the normalized frequency changes (–ΔD/Δf) is less than 0.2 × 10⁻⁶ Hz⁻¹ (Fig. 1b) which indicates that the use of the Sauerbrey equation is a good approximation [62,63]. The mass surface coverage, Γ, (right axis of Fig. 1a) was estimated from Δf using the Sauerbrey equation (described in the experimental section).

The adsorbed mass is larger as we increase the proportion of FcCDA. For example, for 7 bilayers, the assemblies (PAA/CTA)7 showed a surface coating of 9.8 μg cm⁻², while for (PAA/FcCDA)7, it was 75.4 μg cm⁻². As this increase in adsorbed mass is not only due to the difference in the molecular weight of each surfactant (MW FcCDA = 470.5 and MW CTA = 284.5 g/mol), it is inferred that a greater number of moles of surfactant and polyelectrolyte are adsorbed as the proportion of FcCDA in solution is increased. These results could be explained in terms of the self-assembling tendency of each surfactant, which is related to its critical micellar concentration (CMC). In general, the lower the value of CMC, the greater the tendency to self-assemble. In the absence of salt at 25 °C, the CMCs are 0.17 mM and 0.98 mM for FcCDA and CTA, respectively [54]. In all cases, the assemblies exhibited a supralinear growth. Moreover, the –8ΔD/Δf sharply decreases as FcCDA is introduced, evidencing an increase in the rigidity of the films (Table 1).

The hydration of PAA and surfactant assemblies was also studied. For this, the assemblies of 7 deposition cycles were dehydrated with dry nitrogen (0% RH) for 20 min and then exposed to a nitrogen atmosphere with a high content of water (95% RH) for 10 min. The changes in frequency and dissipation were monitored throughout the experiment (Fig. 2a). Interestingly, the films adsorbed meager amounts of water (less than 15%, Fig. 2b) compared with previously reported layer-by-layer assemblies made of polyanions and polycations (between 30% and 70%) [62,64].

![Image](https://example.com/image.png)

Table 1

| XFcCDA (mM) | ΓFcCDA (ng/m²) | ΓPAA (ng/m²) | δFcCDA (pC/m²) | ξFcCDA (pC/m² | ηFcCDA (pC/m²) | cFcCDA (mM) | –8ΔD/Δf (×10⁻⁶ Hz⁻¹)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.93</td>
<td>3.55</td>
<td>0.87</td>
<td>0.13</td>
<td>0</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>4.50</td>
<td>4.95</td>
<td>0.79</td>
<td>0.21</td>
<td>188</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>8.80</td>
<td>9.65</td>
<td>0.81</td>
<td>0.19</td>
<td>502</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>7.45</td>
<td>13.3</td>
<td>0.75</td>
<td>0.25</td>
<td>923</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17.9</td>
<td>46.6</td>
<td>0.71</td>
<td>0.29</td>
<td>1500</td>
<td>0.0010</td>
<td></td>
</tr>
</tbody>
</table>

Surface mass estimation error is less than 5%.
the degree of hydration and the dissipation change (Fig. 2a and b) were dependent on the proportion of mixed surfactants in the assembly, results consistent with those obtained from the viscoelastic properties (Fig. 1, bottom).

As the films are very rigid with a low hydration degree and their viscoelastic properties did not show a significant dependence with the nature of the last layer, the mass of PAA (\(C_{\text{PAA}}\)) and surfactants (\(C_{\text{surf}}\)) can be obtained after extracting the water component at the total frequency changes measured by QCM-D.

As it was previously established, the CTA:FcCDA ratio in the films is practically the same as in solution\[33\], the mole fraction of PAA monomers \(X_{\text{film}}^{\text{CTA}}\) and the mole fraction of surfactant \(X_{\text{film}}^{\text{FcCDA}}\) in the films is obtained using the monomer molecular weights of PAA (\(M_{\text{w, PAA}} = 72\) g/mol) and the molecular weight of CTA and FcCDA, previously given. The apparent molecular weight of the mixed surfactants is given by:

\[
M_{\text{surf}} = X_{\text{CTA}}^{\text{FcCDA}} \times 284\ \text{g/mol} + X_{\text{FcCDA}}^{\text{FcCDA}} \times 470\ \text{g/mol}
\]

where \(X_{\text{CTA}}^{\text{FcCDA}}\) and \(X_{\text{FcCDA}}^{\text{FcCDA}}\) are the molar fraction of the different surfactants in the solution (\(X_{\text{CTA}}^{\text{CTA}} + X_{\text{FcCDA}}^{\text{CTA}} = 1\)).

Table 1 presents the surface coverage values of PAA and surfactant obtained for each assembly system after 7 cycles of adsorption. As the CTA fraction for the film preparation decreases, also the PAA fraction in the film \(X_{\text{PAA}}^{\text{film}}\) decreases. From the comparison of these results with the hydration study (Fig. 2), it is evident that the degree of hydration of the assemblies increases with the polyacrylate fraction. This last observation was to be expected given that the PAA has a greater polar nature (and therefore higher affinity for water) than the surfactants used with aliphatic chains of 16 carbons long. The \(C_{\text{film}}^{\text{FcCDA}}\) values were obtained as described in the experimental section.

3.2. Electrochemical response

The electron transport throughout the multilayer assemblies prepared from different CTA:FcCDA ratios were studied by cyclic voltammetry (CV). This is a fast and simple technique through which kinetics and mass transport features can be assessed using the shape of the voltammogram and the characteristic peak current and peak potential \((i_p\) and \(E_p\)). Studies performed by CV showed that the \((\text{PAA}/\text{FcCDA})_7/\text{PAA}\) assembly dissolves during the oxidation process, evidenced as a decrease of the faradaic current as a function of the number of cycles. Similar behaviors were previously reported for assemblies of polyanions and polycations that contain a redox center in each monomeric unit\[65,66\]. The lack of structural stability after the electrochemical oxidation is because a high density of positive charges is produced due to the high concentration of redox centers, causing desorption by electrostatic repulsions \[66,67\]. Therefore, different mixtures of redox (FcCDA) and non-redox (CTA) surfactants were tested as an approach to decrease the redox centers concentration in the film and, thus, enhance the structural stability. We observed that assemblies prepared from CTA-FcCDA mixtures of \(X_{\text{FcCDA}}^{\text{FcCDA}} \leq 0.5\) displayed good structural stability against oxidation, since the faradaic current and the voltammogram shape remained without significant variations after the 20th CV cycle. Specially, the one with \(X_{\text{FcCDA}}^{\text{FcCDA}} = 0.1\) undergoes 30 cycles without noticeable changes (Fig. 3a). On the other hand, the peak current as the function of
X\text{SC}_{\text{FcCDA}} (Fig. 3b) was obtained from their voltammograms (inset), and, as expected, the increase of X_{SC} leads to an increase in the faradaic current.

From the results obtained with the quartz microbalance and considering that the ratio between surfactant with and without ferrocene in the film is practically the same as the solution that originates it [33], the number of moles of FcCDA after 5 layers can be established (Table S1). It was obtained that between the systems containing 0.1 and 0.5 redox surfactant fractions, there is a practically 8-fold increase in redox centers, this is due to the increasing amount of mass adsorbed when the FcCDA fraction increases. Observing the voltammogram in Fig. 3 (right, inset), the current relationship between the systems containing 0.1 redox surfactant fraction (red thick line) and the one containing 0.5 (black thin line) is less than the double. On the other hand, the difference between peak current potentials (ΔE_p) is smaller in the system containing fewer ferrocene centers. At first glance, these observations are striking since it is expected that by having a higher number of redox centers, the system will present a better charge transport. Also, the voltammograms show a shift toward higher potential values (i.e., an increase of the formal potential) as the concentration of FcCDA in the films increases. Since the concentrations of redox centers are higher than 100 mM in all cases, the generation of positive charges during oxidation can cause a substantial effect on the formal potential (E°) of the couple. This parameter has been taken into account since the early papers devoted to the electrochemical response of adsorbed species until our days [68–73]. However, in most of these works, reversible processes are considered that is not the case here where the ΔE_p value reflects a quasireversible process.

The relationship between peak current as a function of the scan rate at different stages of the assembly process is presented in Fig. 4. The values are represented in the logarithmic form since, in this way, the corresponding electrochemical behavior can be assigned depending on the slope value. A slope of 1 corresponds to a thin layer behavior, while a slope of 0.5 corresponds to a semi-infinite diffusion-controlled process. It is apparent that for assemblies constituted with 1 and 3 bilayers, the behavior corresponds to a thin layer for almost all the scan rates, while for 5 and 7 bilayers corresponds to a diffusion-controlled process for practically all the scan rates. For example, for 5 bilayers, the maximum scan rate where the voltammogram has a bell shape is at 10 mV s$^{-1}$, while for 3 bilayers still at 250 mV s$^{-1}$ a distinct bell shape is observed (Fig. S1. Electronic Supplementary material). This sharp change in the charge transport is in accordance with how the film grows from 13 to 40 nm in thickness between 3 and 5 bilayers.

The charge transport through electroactive films involves electron hopping from one reduced molecule to an adjacent oxidized molecule in fixed sites, generating concentration gradients of oxidized and reduced sites, and the flux of counterions to compensate the generated charge within the film. The ingress or egress of ions is a diffusive process presenting a diffusion coefficient that can be
different from the one in solution. The electron hopping process can be described considering the electron as a species that diffuse through the film following Fick’s laws [74,75]. In this way, an apparent diffusion coefficient (D_{ap}) is established for electroactive films, which characterizes the ability of the film to propagate the redox process, and is determined by the slowest charge transport mechanism (electron hopping vs. counterion diffusion) [48,61].

The information provided by the cyclic voltammetry experiments at different scan rates was used to feed a numerical model using a finite-element software in which the redox centers are assumed to be confined within the film to obtain kinetics parameters related to the heterogeneous electron transfer rate between the electrode surface and the redox centers (k_0), and the apparent diffusion coefficient (D_{ap}). To simulate the cyclic voltammograms, it is necessary to know the concentration of ferrocene moieties and the thickness of the film. For this purpose, the value of concentration presented in Table 1, the charge from cyclic voltammetries at low scan rates, and the electrode geometrical area were used to calculate the thickness of the film. Taking these two parameters into account and considering the electrode area, the nominal thickness yields a value of 57 nm. D_{ap} and k_0 are determined from the adjustment of the model to experimental cyclic voltammograms to reproduce peak high and peak separation at different scan rates. Fig. 5a and 5b show the fitting for the peak current density and peak potential difference at different scan rates for (PAA/CTA0.9-FcCDA0.1)/PAA assembly. These values correspond to simulations carried out taking $D_{ap} = 4 \times 10^{-12}$ cm2 s$^{-1}$ and $k_0 = 7.5 \times 10^{-7}$ cm s$^{-1}$.

In Fig. 5c, the experimental voltammogram at a low scan rate (10 mV s$^{-1}$, thin layer behavior) is represented together with the simulated one. The difference in the shape of the peak can be explained due to the limitation of our simulation model. In the model the interaction between redox centers is not taken into account; therefore, its shape corresponds to an ideally adsorbed species with a quasireversible behavior; while in the experimental voltammograms the repulsion between the charged redox centers generates a broaden peak that can be explained considering that each redox centers present a formal potential depending on its environment [68–73]. A simple representation of this phenomenon is considering the system as a mixture of several species with different formal potential and each of them at a given concentration. Fig. 5d shows the shape for a simulated voltammogram (green thin line) considering 4 species with slight differences in formal potentials and a convenient concentration ratio (see details in the caption figure). In this way, the fitting with the experimental data is improved, supporting the idea of formal potentials dependent on the environment.

D_{ap} values for redox polyelectrolyte-based films go from 10^{-8} to 10^{-13} cm2 s$^{-1}$, and it has been demonstrated that the molecular architecture of these systems has an important effect on the resulting charge transport. On the side of highest diffusion values, Heller and coworkers demonstrated that D_{ap} increases with the degree of hydration of the electroactive film, and for highly hydrated films of hydrogels modified with osmium complexes, they reported D_{ap} values close to 10^{-8} cm2 s$^{-1}$ [76,77]. Regarding layer-by-layer systems, Zambelli and collaborators have reported D_{ap} of 2.50 \times 10$^{-10}$ cm2 s$^{-1}$ for assemblies of ferrocene-modified polyallylamine (PAH-Fc) and polyglutamic acid (PGA), and D_{ap} of 5.6 \times 10$^{-12}$ cm2 s$^{-1}$ for assemblies of PAH-Fc and polystyrenesulfonate (PSS) [78]. These authors concluded that a higher value of D_{ap} is showed for polymers layers with greater interdiffusion yielding an increase of the short-range movement of the redox centers and, thus, improving the electron transport. Another interesting example is the work of Tong and collaborators of mesostructured and electroactive films prepared from ionic self-assembly of PSS and redox surfactants of different lengths of the alkyl chain [47]. These authors reported that D_{ap} increases from 1.25 \times 10$^{-12}$ to 17.9 \times 10$^{-12}$ cm2 s$^{-1}$ as the length of the alkyl chain increases from 7 to 16 carbon atoms. The authors explain this behavior considering that the diffusion of counterions and the charge transport into the film are faster in the derivatives with longer chains due to the more ordered mesomophorous structure formed by the longer surfactant which would supply better channels for electrolyte diffusion and charge transfer. In this work ($D_{ap} = 4 \times 10^{-12}$ cm2 s$^{-1}$), the assemblies show well-defined mesostructure, marked hydrophobic character, and high rigidity. Therefore, the ingress of counterions to compensate the charge generated by oxidizing the ferrocene centers is more difficult than the case of highly hydrated hydrogels [76,77], being more similar to the assemblies reported by Tong [47].

3.3 Mass transport

Another aspect to consider in the whole process is the diffusion of the counterions to maintain the electroneutrality inside the film (schematized in Fig. 6a). It has been frequently reported that the flow of electrons occurring in the oxidation process requires the ingress of anions from the solution or the egress of cations present in the film to maintain the condition of electroneutrality [57,79–83]. Also, the flow of ions to compensate for the charge generated is accompanied by the flow of the solvent. In this section, we present the study of the flow of ions and solvent carried out by the quartz crystal microbalance technique with an electrochemical module (EQCM-D) for assemblies (PAA/surfactant)$_n$. The current density (j) and the frequency (Δf) obtained during a cyclic voltammetry experiment using an assembly of (PAA/CTA0.9-FcCDA0.1)/PAA and (PAA/CTA0.9-FcCDA0.1)/PAA are shown in Figs. 6b and S2 in ESI, respectively. The results show that, as the redox centers of the film are oxidized, an increase in mass occurs (visualized as a decrease of Δf) due to the ingress of anions to maintain the electroneutrality. Once the half cycle is finished, the reverse potential scan is applied to produce the reduction of the redox centers and egress of the counterions. During the experiment, a slight hysteresis was observed in the oxidation/reduction process concerning the mass exchange, an effect already reported [57,84].

The comparison of the changes in frequency (Δf), dissipation (ΔAD) and faradic charge (Q) as a function of time (Fig. 6c) show that the decrease in frequency during the oxidation of the film is accompanied by an slight increase in dissipation. The fact that the changes of Δf and ΔAD as a function of Q are practically identical for all harmonics (see curves for $n = 3, 5, 7$) is another evidence of the high film rigidity supporting the use of the Sauerbrey equation as a good approximation [82].

Fig. 7 shows the change of Δf and ΔAD as a function of the faradic charge during the cyclic voltammetry experiments using sodium salts with anions of different radius: NO$_3^-$ < Cl$^-$ < SO$_4^{2-}$ (see Table 2). These anions represent a benchmark for the study of mass and charge transport in layer-by-layer systems [57,65,85], phenomena that are frequently correlated with the Hofmeister series (and, therefore, with the solvation energy). As is well known, the nature of the anion can have a strong influence on the final properties of charged supramolecular and macromolecular systems [86–88]. Anions that form strong ion pairs with our charged supramolecular assemblies, such as ClO$_4^-$, were not used to avoid conformation changes and the disassembly of the films [68,89–91]. The chosen anions follow the order NO$_3^-$ < Cl$^-$ < SO$_4^{2-}$ in the Hofmeister series. On the left side of the series, ions are chaotropic, exhibiting weaker interactions with water. On the right side, ions are kosmotropic, exhibiting strong water solvation.

Qualitatively, the results obtained using NaNO$_3$ were similar to those obtained with NaCl. Δf decrease and an slight ΔAD increase were observed as the film was oxidized, and the opposite behavior...
Fig. 5. Peak current density (a) and peak potential (b) versus scan rate for the experimental data (black squares) of the assembly (PAA/CTA0.9-FcCDA0.1)/PAA and the simulated data (green circles) assuming $E^0 = 80.47$ V. (c) experimental (black thick lines) and simulated (green thin lines) cyclic voltammograms considering the formal potential is equal to 0.47 V; (d) the simulated voltammogram is the addition of the voltammograms of 4 species with formal potentials equal to 0.40, 0.44, 0.47 and 0.50 V with the following molar fractions: 0.27, 0.27, 0.32 and 0.14, respectively. $D_{ap} = 4 \times 10^{-12}$ cm2 s$^{-1}$, $k_0 = 7.5 \times 10^{-7}$ cm s$^{-1}$ and a film thickness of 57 nm was considered for all the simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. EQCM-D response for a (PAA/CTA0.5-FcCDA0.5)/PAA assembly. a) Scheme of the experimental setup. b) Current density (j) and Δf as a function of the applied potential. c) Frequency change (solid lines), dissipation (dashed lines) and faradaic charge (Q) as function of the time. Frequency and dissipation correspond to the harmonics 3 (green), 5 (red) and 7 (black). All the experiments were carried out in a 100 mM NaCl at a scan rate of 25 mV/s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
in the reduction process. On the other hand, the experiments carried out using Na₂SO₄ showed an increase of Δf during the beginning of the oxidation and then a decrease of Δf in the rest of the oxidation process. The observed behavior suggests that in the presence of the SO₄²⁻ anion, the system responds to oxidation by first expelling cations and then capturing anions. The behavior of SO₄²⁻ can be explained by a combination of factors, on the one hand, its stronger interaction with water, and on the other, as it is a divalent ion, the existence of a greater electrostatic repulsion between this ion and the outer layer of PAA of the film (also negative). Similar observations were reported for modified polyallylamine with complexes of osmium (PAH-Os) and polystyrenesulfonate (PSS) [92] and for assemblies of PAH-Os and glucose oxidase (GOx) [94] where the entry of anion is accompanied by a large number of water molecules (NH₂O ranging from 15 to 30). Tagliazucchi et al. simulated the ingress of the solvent to swell the film to reduce the differences in electrolyte concentration and osmotic pressure of the ions and the electrostatic forces tend to minimize the repulsion between the osmotic pressure of the ions and the electrostatic forces tend to the equilibrium with the hydration sphere of the anion in solution. This observation differs from that obtained for multilayer assemblies of modified polyelectrolytes with complexes of osmium (PAH-Os) and polystyrenesulfonate (PSS) [92].

By using the Sauerbrey equation, the mass per unit of charge was obtained that allows estimating the number of water molecules that accompany the entry of each anion. Table 2 compiles the values of mass exchanged per unit of charge (Δm/ΔQ), the molar mass exchanged (Δm), and the number of water molecules (Nₑₑₑ水肿、cell membrane potential, and ATP generation. The efficiency of the charge transport is NO₃⁻ > Cl⁻ > SO₄²⁻. Therefore, the results indicate that the size of the anion plays an essential role in the electrochemical response of these highly organized and compact electroactive films. A detailed study with more salts should be carried out to corroborate this hypothesis.

![Fig. 7. Δf (green circles) and ΔD (red triangles) as a function of the faradaic charge (Q) for (PAA/CTA₀.5-FcCDA₀.5)₇/PAA. The studies were carried out in NaCl, NaNO₃, and Na₂SO₄ solutions at a concentration of 100 mM. Scan rate: 25 mV/s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image)

Table 2 Mass to charge relationships and hydration number (Nₑₑ_epi) estimated from EQCM-D data in the presence of different anions.

<table>
<thead>
<tr>
<th>Anion</th>
<th>(Δm/ΔQ)/g C⁻¹ (x 10⁻³)</th>
<th>Δm/g mol⁻¹</th>
<th>Nₑₑ_epi</th>
<th>Ionic radius/nm</th>
<th>Nₑₑₑₑₑₑₑₑₑₑₑₑₑ_epi coordination **</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃⁻</td>
<td>1.64 ± 0.03</td>
<td>158 ± 2</td>
<td>5.3</td>
<td>0.177</td>
<td>6</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>1.52 ± 0.18</td>
<td>146 ± 17</td>
<td>6.2</td>
<td>0.180</td>
<td>6–8</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>0.95 ± 0.04</td>
<td>183 ± 8</td>
<td>4.8</td>
<td>0.242</td>
<td>6.4–9.6</td>
</tr>
</tbody>
</table>

* Values are the average and their standard deviations calculated from four different sets of EQCM-D voltammetric experiments measured at 25 mV/s.

** Values reported in Ref. [93].
4. Conclusions

We demonstrated in this work that the layer-by-layer assembly of polyelectrolytes and different mixtures of redox and non-redox surfactants allows the generation of a rigid structure with a low content of water presenting a quasireversible electrochemical response. This behavior represents an exciting feature since the system can carry out an efficient electron transport through the film preserving its structure (dissipation changes are negligible).

In previous works devoted to electron transfer in layer-by-layer hydrogels, significant changes (up to 20%) in the water content of the film were observed [79,81–84,97]. As these materials present a viscoelastic behavior, the successive cycles of the electrochemical treatment leads to changes in their structures, as it was demonstrated by Sun et al. [98], where the hydrogels thickness and Young’s modulus change at each cycle. On the other hand, our approach is complementary to previous works related to polyelectrolyte-surfactant systems where the redox moiety is grafted on the polyelectrolyte, and the studies are centered in the meso-structure obtained by changing the surfactants [37,99,100]. Here, we have used the ordered meso-structure to build a stable electroactive interface. Finally, ferrocenyl surfactants have been a matter of research for several years; however, these studies were mainly focused on exploiting the changes in aggregate microstructures, surface tension, and redox properties that can be achieved by manipulating in the oxidation states [101–106].

The precise control over the meso-organization and the stability through the redox process presented by these assemblies makes them promising components in the construction of devices where the vectorial transfer of electrons, or ions, is required. For example, by oxidation of the ferrocenyl moiety, the film can be loaded with a specific anion, which can be released by its reduction. On the other hand, its assembly on transparent electrodes (e.g., ITO) could lead to electrochromic devices since ferrocene in its reduced state is amber (maximum absorbance at 445 nm), while in its oxidized state turns blue (maximum absorbance at 619 nm) [106].

CRediT authorship contribution statement

Esteban Piccinini: Conceptualization, Investigation, Methodology, Formal analysis, Writing - original draft. Graciela A. González: Conceptualization, Formal analysis, Writing - original draft. Omar Azzaroni: Conceptualization, Formal analysis, Supervision, Writing - review & editing. Fernando Battaglini: Conceptualization, Formal analysis, Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements

This work was supported by the following institutions: Universidad de Buenos Aires (UBACYT 2002170100341BA), PIP CONICET (1122015010291CO), Universidad Nacional de La Plata (UNLP-PND-X016), ANPCYT, Argentina (PICT 2015-0801, 2016-1680, 2017-1523), and CONICET (PIP-0370). G.A.G., F.B. and O.A. are staff members of CONICET. E.P. acknowledges a postdoctoral fellowship from CONICET.

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.jcis.2020.07.060.

References

M. Tagliazucchi, Estudio de films nanoestructurados obtenidos mediante técnicas de autoensamblado capa por capa, Tesis Dr. (2009) 2–173.

