Impact of Chemical Primers on the Growth, Structure, and Functional Properties of ZIF-8 Films

Juan A. Allegretto,* Melina Arcidiácono, Paula Y. Steinberg, Paula C. Angelomé, Omar Azzaroni, and Matias Rafti*

ABSTRACT: ZIF-8 (zeolitic imidazolate framework) metal–organic framework (MOF) thin films have been studied extensively given their possible applications in separation membranes and sensors and even for microelectronics. The wide variety of substrates and synthetic strategies used for ZIF-8 film formation causes a dispersion in the properties observed, and elucidation of the influence of each step in such processes is a much-desired goal that remains partially unexplored. Therefore, we herein focused on a thorough characterization of the effect of substrate surface chemistry given by chemical primers on the resulting films. Specifically, we used self-assembled monolayers (SAMs) of 3-mercaptop-1-propanesulfonic acid (MPSA) and (3-aminopropyl)triethoxysilane (APTES). We have analyzed and evaluated its influence on growth progression, thickness, crystallinity, surface roughness, compactness, and porosity on ZIF-8 films grown via a one-pot liquid-phase epitaxy approach and the overall impact of those properties on molecular transport of different probes. We observed significant differences regarding transport properties, and thus available porosity, even for films featuring similar thickness, a parameter widely employed for film comparison. While MPSA renders more compact films and permselectivity, the same synthesis procedure applied to APTES-primed substrates yields lower compactness and lower selectivity on molecular transport. Altogether, our results demonstrate that surface chemical modification of substrates plays a fundamental role in the resulting MOF film structure and thus can be used to modulate crucial properties for prospective use in technological devices.

INTRODUCTION

Since the advent of metal–organic frameworks (MOFs),1,2 an ever-increasing number of reports deal with their versatility in terms of crystalline structure and morphology,3 surface chemistry, functional properties, and potential for integration into diverse platforms.4,5 Furthermore, this activity stimulated an extended quest for further applications in diverse fields.6–8

A particularly interesting approach enabling many applications is to synthesize MOFs in a film configuration, which allows one to acquire detailed control over surface and interfacial properties. Over the past few years, several reviews have been published covering various aspects of MOF films synthesis and their potential applications in energy, separations, or sensing, just to name a few prominent examples.9–12

One way of achieving continuous, crystalline, and smooth MOF films is to modify the substrate employed with a suitable primer, which should ideally expose appropriate chemical moieties to boost MOF heterogeneous nucleation. Having created such a primer structure, it is possible then to grow films by alternatively exposing substrates to solutions of the linker and metallic ion, a procedure known as step-by-step liquid-phase epitaxy (LPE), which can lead to the formation of films known as surface-attached MOFs or SURMOFs.13–15

SURMOFs allow the fine-tuning of film thickness as well as further control over crystalline orientation. Another advantage of using highly oriented crystalline SURMOFs is the minimization (or even suppression) of diffusion barriers, which decrease mass transfer and thus affect separation performance.16 Although thickness for SURMOFs is usually defined up to a few tens of nanometers, there are few reports of relatively thick SURMOFs (70–100 nm).17–19 Thicker films can be also obtained by using a modified LPE procedure in which a one-pot direct mix of precursors is carried; in this way, synthesis time can be reduced, although the payoff is some degree of control loss regarding film structure. It is evident then, the importance of understanding synthetic approaches in order to produce continuous and relatively thick MOF films in a controlled and reproducible fashion, with high reproduc-

Received: December 9, 2021
Revised: February 17, 2022
Published: April 6, 2022
bility regarding key functional features such as thickness, coverage, and porosity.

For a certain material to be considered as a prospect toward a given application, it must fulfill basic requirements regarding structural stability upon exposure to relevant working conditions (e.g., solvent, pH, temperature, ionic strength). Zeolitic imidazolate frameworks (ZIF-MOFs) in general, and zinc/2-methylimidazole-based ZIF-8 in particular, constitute a particularly interesting example of a porous material due to its ability to meet such criteria. ZIF-8 stands out due to its inherent hydrophobic microporosity (1.16 nm pore diameter with 0.34 nm pore aperture, and BET surface areas up to 1600 m2 g$^{-1}$), with relatively high chemical and thermal stability.20−22 There are various recently reported interesting examples dealing with potential applications of ZIF-8 films including gas- and liquid-phase separations,23,24 sensing,25,26 catalysis,27,28 and electrocatalysis.$^{29−31}$

Any intended improvement regarding approaches to efficient and controlled synthesis of ZIF-8 films relies necessarily upon a thorough understanding of the growth process (specifically during one-pot LPE synthesis) and the influence of substrate surface chemistry. Aside from procedures omitting a primer,$^{32−34}$ or the recently proposed use of polymeric brushes as 3D primers,$^{35−37}$ most traditional approaches make use of 2D primers such as silanes layers and thiol self-assembled monolayers (SAMs). The choice of one layer or another relies on the final purpose of the film. For instance, silanes allow the modification of silicon, glass, and nonmetallic conductive substrates (e.g., indium tin oxide (ITO) coated glass), and even capillary tubes.$^{38−40}$ On the other hand, thiols allow the functionalization of metal surfaces in an ordered fashion whose plasmonic and conductive properties to be exploited.$^{17,41−45}$

One particular point that cannot be omitted, is the influence of the density of nucleation points across the substrate’s surface and how this can potentially affect the heterogeneous nucleation of films.37,42 Furthermore, when films grown on different substrates are analyzed, the resulting variation in surface chemistry, density and distribution of nucleation points, and synthesis conditions make comparison among them a very challenging task.

Herein, we tackle this problem by performing a direct comparison on the effect of nucleation points on the growth of ZIF-8 films by comparing films grown via consecutive one-pot LPE on two model substrate surfaces exposing primary amine and sulfonic acid moieties, namely, (3-aminopropyl)-triethoxysilane or APTES, and 3-mercapto-1-propanesulfonic acid or MPSA. The comparison is based on a characterization of growth dynamics, structure (both morphology and crystallinity), and porosity. To this end, quartz-crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry experiments were carried out to characterize the thickness evolution (results were also compared with previous reports using optical waveguide spectroscopy (OWS)). Structural characterization was conducted by X-ray diffraction (XRD) and X-ray reflectivity (XRR), while atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were employed for characterization of morphology and surface chemistry. Finally, functional properties related to permeability, in terms of molecular transport of redox probes through a film’s porosity, were probed via cyclic voltammetry,43,44,46,47 and the obtained

Figure 1. (a) Scheme for surface modification and procedure followed for ZIF-8 film growth. (b) Scheme of QCM-D fundamentals in rigid and viscoelastic media. Changes in (c) frequency (dashed: linear fit) and (d) dissipation factor normalized by frequency change after each ZIF-8 growth cycle. (d, inset) Absolute dissipation factor change. o: overtone. Error bars: Standard deviation of the mean.
results were analyzed using the partially blocked electrode model (PBE).38

RESULTS AND DISCUSSION

Film Evolution: Thickness and Internal Structure. Surface modifications using APTES and MPSA were carried over Au and Si substrates to anchor nucleation points suitable to trigger ZIF-8 heterogeneous nucleation. Although the exposed moieties (NH2 for APTES and SO3− for MPSA) are different, ZIF-8 nucleation was demonstrated to be feasible in both cases and good quality films were already reported.38,42,44,45

As mentioned before, ZIF-8 films were grown by the so-called one-pot LPE method. As shown in Figure 1a, the film growth was carried by repeating growth cycles, thus gradually increasing thickness. After the completion of each individual cycle, the film properties were analyzed. Hereafter, the films obtained after n growth cycles will be referred to as n-ZIF-8, followed by @APTES or @MPSA, indicating the primer used.

Film growth was first analyzed via QCM-D, which has been already proved a powerful technique to this end.34,49 As represented in Figure 1b, changes in the resonance frequency (f, Hz) of the quartz sensor can be related to the surface-bounded mass.50 Additionally, the damping produced by viscoelastic materials can be interpreted in terms of the dissipation factor D, and the viscoelasticity of the films can thus be inferred; i.e., higher D values correspond to a viscoelastic behavior of the linked layer or “soft” films, while low D values can be associated with either rigid or elastic films coupled to resonator oscillation.51 Au- and SiO2-coated QCM sensors were modified with MPSA and APTES, respectively, and used as substrates for ex-situ ZIF-8 film growth (four samples prepared on each substrate were explored in order to ensure reproducibility). Considering primed sensor frequency as a reference, Δf values for dry films as a function of ZIF-8 growth cycles on both APTES- and MPSA-covered substrates were acquired, as shown in Figure 1c. Although both surface modification strategies followed triggered ZIF-8 film growth, there are clear differences. The Frequency change for the first growth cycle (1x-ZIF-8) is 4.7 times higher for MPSA than that for APTES. This can be ascribed to stronger interactions between SO3− moieties and Zn2+ ions, compared to the NH2-decorated surface,42,45 and to differences in the density of nucleation points introduced by the surface modification strategy employed. As expected, each modification strategy will decorate the substrates’ surface with a different density of nucleation points, according to corresponding chemical characteristics. To highlight this difference, ellipsometric experiments were conducted for thickness determination and ultimately the optical mass density (Γ) of each nucleation layer through Lorentz−Lorenz approximation (see discussion in the Supporting Information (SI)). Notoriously, MPSA SAM renders ΓMPSA = 0.10 μg cm−2, while APTES grafting renders an ~7 times higher mass density (ΓAPTES = 0.66 μg cm−2); yet MPSA decorated surfaces promote the ZIF-8 growth further. In other words, not only the density of nucleation points is relevant, but also the chemical interaction with ZIF-8 building units; MPSA generates a surface with a lower density of nucleation points than APTES but with stronger interactions (these points will be discussed again in the context of XRR experiments). The growth rate (in terms of frequency change, Δf/Δn, n = growth cycle) also shows clear differences; The MPSA primer layer promotes a linear Δn=1−5(Δf) = −745 ± 9 Hz/n increment; while for the APTES-functionalized surface Δf gradually increases from Δn=1(Δf) = −173 Hz (for the first cycle) to Δn=4−5(Δf) = −681 Hz (for the fifth cycle).

For uniform and rigid (elastic) films, Sauerbrey’s equation can be employed to convert frequency changes into mass density changes Δm (see the SI), and ultimately a value of thickness can be inferred. A commonly accepted limit for Sauerbrey applicability is ΔD/Δf < 0.2 × 10−6 Hz−1, which ensures that D values do not depend on the resonance frequency of the sensor.52 As shown in Figure 1d, both surface modifications employed yield rigid ZIF-8 films below such a limit. As a comparison, in Figure 1d, inset, the absolute D value is shown for each growth cycle and compared with the typical D values obtained for polyelectrolyte films built with a layer-by-layer method. This D value is typically accepted as the limit after which viscoelastic contributions cannot be neglected and Sauerbrey’s formalism no longer applies.52 It is safe to assume then that ZIF-8 films are rigid enough to be analyzed within this model (the progression of Δm as a function of growth cycle number can be found in the SI). Although film thickness will be analyzed below, together with ellipsometry results, it is worth emphasizing that, despite both primers used leading to thick and rigid ZIF-8 films, only MPSA yields linear and homogeneous growth progression, which suggests that their structure (and thus functional properties) might differ from each other.

The lateral structure, porosity, and thickness of films obtained were then explored with XRR and spectroscopic ellipsometry. As seen in Figure 2a, XRR profiles depict the position of critical angles qc, corresponding to substrates (qc = 0.032 Å−1 for Si and qc = 0.077 Å−1 for Au), together with

![Figure 2.](image-url)
additional features at lower \(q_c \), ascribable to the ZIF-8 film.37 As shown, no extra \(q_c \) is visible for the 1x-ZIF-8@APTES sample, despite the presence of a film as described above. On the other hand, \(q_c \) for the 5x-ZIF-8@APTES film is visible; this suggests that APTES promotes the growth of a rather inhomogeneous film that later becomes smoother with subsequent growth cycles. On the contrary, MPSA films are smooth and homogeneous enough to feature additional \(q_c \) corresponding to the ZIF-8 film even after only one growth cycle.

The XRR derived critical angle is proportional to the square of the mass density;53 therefore, by comparing \(q_c \) values of the different films, their compactness can be assessed (see the SI for further details). Given the porous nature of ZIF-8, it is important to note that there are two main contributions to the total porosity: an intrinsic microporosity, provided by the ZIF-8 crystalline structure, and a so-called constructional porosity which depends on compactness achieved after synthesis.54 This concept resembles the idea of "intergrain space", typically employed when dealing with bulk metallic materials or heterogeneous catalysts. However, constructional porosity results from the coalescence of multiple ZIF-8 growth fronts. Thus, it does not necessarily imply the presence of actual grains, but it generates additional (less hydrophobic) mesopores. Cracks or major defects present on the films do not fall in this category, given the differences in scale compared with micro- and mesopores.55 Table 1 summarizes the critical angles obtained for 1x- and 5x-ZIF-8 films grown using APTES and MPSA as primer layers. As it can be seen, 1x-ZIF-8@MPSA features the higher \(q_c \) value in the series, which means that it is the most compact film (higher density). The following value corresponds to 5x-ZIF-8@MPSA; the effect of MPSA is expected to vanish as film growth proceeds, thus generating a less compact structure.45 On the other hand, 5x-ZIF-8@APTES films feature the lowest value of \(q_c \), and given that the 1x-ZIF-8@APTES film is not suitable for critical angle measurement, the compactness of the film is expected to be at least equal to or lower than that of 5x-ZIF-8@APTES, which was later confirmed by spectroscopic ellipsometry (SE). In terms of nucleation points, MPSA surface modification seems to render a homogeneous distribution of nucleation points that promotes a homogeneous growth of ZIF-8 and, together with the stronger interaction of sulfonic moieties with zinc ions (compared with amino groups) yield thicker and compact films at each growth cycle.

For the sake of completeness, Table 1 shows previous results obtained using 3D primers (poly(1-vinylimidazole) brushes) as nucleation points, which allow tuning of the compactness of the film right between the values observed when using MPSA and APTES.37 In this previous work, we have shown that the compactness of ZIF-8 films has a direct impact on the constructional porosity, with a lower hydrophobic character than intrinsic microporosity. Values of 5%, 50%, and 100% represent the grafting densities used for imidazole-baring polymeric chains; the lower the value, the greater the space between those chains, which results in lower compactness of the resulting films or higher constructional porosity.

Quantification of microporosity and constructional porosity by comparing \(q_c \) values would require: (i) performing adsorption experiments with probe molecules accessing environments with different polarities (this presents additional complexity and does not necessarily probe the entire porosity of the film);16 or (ii) a mass density value corresponding to a dense, nonporous ZIF-8 mass density that could be ascribed to the material’s framework. Since ZIF-8 is naturally porous, access to the latter is not possible. The alternative thus is to use as a benchmark the most compact film of the series and to estimate the additional porosity of the remaining set (see the SI). Through this approach, it was possible to estimate that the 5x-ZIF-8@MPSA film is 9.8% more porous than the 1x-ZIF-8@MPSA film; the porosity of previously reported PviM-based films ranges from 27% to 30% higher than the benchmark, and the 5x-ZIF-8@APTES porosity is also 32.4% higher than the reference. Finally, 1x-ZIF-8@APTES is expected to be at least as porous as 5x-ZIF-8@APTES. The presence and role of the constructional porosity of the films will be discussed again in the context of CV electrochemical experiments.

The optical properties of the films can be related to their total porosity; thus, SE experiments were also conducted (see the SI for further details). SE experiments analysis require building an optical model describing the observed optical response of the film, which then is used to calculate its thickness and optical constants. Using a Cauchy layer to represent ZIF-8 film optical properties, given that neither Zn2+ nor mI− feature absorption bands in the spectral range explored, the refractive index at \(\lambda = 632.8 \) nm was obtained and compared with previous reports.37,45 The progression of \(n \) (real part of the complex refractive index \(N = n + ik \) as a function of growth cycles is shown in Figure 2b. As it can be seen, MPSA-based films display a rather constant value for \(n \) close to 1.35, which suggests that compactness does not change significantly as growth cycles proceed. On the other hand, the use of APTES as a primer does have an impact on the refractive index, which evolves toward a value close to the corresponding to MPSA (complete SE curves set can be found in the SI), in line with QCM and XRR findings above-discussed. MPSA provides a more effective primer layer, causing the films to grow homogeneously and thus resulting in uniform effective optical characteristics throughout the process. Each growth cycle can be thought of as a “gap filler” over the previous layer; in this way, the results obtained for APTES-primed surfaces in which films evolve from a less compact to a more compact structure can be rationalized. It is worth noting that, even for rather different film compactness, as determined via XRR, similar effective optical constants (see, e.g., 5x-films in Figure 2b) were obtained. The above discussion highlights the importance of a multitechnique approach for MOF films analysis, due to the existence of several interrelated properties which need to be determined for an unambiguous structure determination.

Film thickness evolution was determined from QCM experiments by using Sauerbrey’s equation and a ZIF-8 mass density reference value \(\delta = 0.95 \) g cm−3 (see the SI). Results are shown in Figure 3 together with thicknesses derived from

Table 1. Critical Angles \(q_c \) for ZIF-8 Films Grown Using Different Primers

<table>
<thead>
<tr>
<th>nucleation layer</th>
<th>(n_x)</th>
<th>(q_c) (Å−1)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTES</td>
<td>1x-</td>
<td>this work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5x-</td>
<td>0.0194</td>
<td></td>
</tr>
<tr>
<td>MPSA</td>
<td>1x-</td>
<td>this work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5x-</td>
<td>0.0226</td>
<td></td>
</tr>
<tr>
<td>PviM brushes</td>
<td>5%</td>
<td>0.0199</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.0201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.0204</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Thickness evolution of ZIF-8 films grown using APTES (top) and MPSA (bottom) primers as seen by QCM-D, spectroscopic ellipsometry, and previously reported values from optical waveguide spectroscopy. Error bars: Standard deviation of the mean.

As can be seen, MPSA produces thicker films and linear growth. Films grown using APTES primer show systematically smaller initial growth rates of 80 and 90 nm/cycle (QCM- and SE-derived, respectively) in accordance with previous reports. On the contrary, MPSA allows for a homogeneous thickness progression of 141, 134, and 138 nm/cycle (as obtained via QCM, SE, and OWS respectively).

Remarkably, although films with similar thicknesses could be in principle obtained using both primers by selecting an appropriate number of growth cycles (e.g., 2x-ZIF-8@APTES and 1x-ZIF-8@MPSA, or 3x-ZIF-8@APTES and 3x-ZIF-8@MPSA), this does not ensure that structures should be considered as comparable. As discussed above, compactness and optical properties evolve during consecutive growth cycles; thickness is not then a parameter that allows a direct comparison. It is worth noticing that three different techniques, based on different physical principles and approximations, provide comparable results, as clearly seen in Figure 3. This is not only a showcase of the reproducibility of the synthetic strategy followed but also reinforces the reliability of the data analysis applied.

Crystallinity, Roughness, and Surface Chemistry of Films. As discussed above, ZIF-8 is a crystalline material and the substrate used for film growth can not only affect the lateral structure of the film but also determine properties such as preferential crystalline orientation. Thus, the crystallinity of the films obtained was analyzed by grazing-incidence (GI) XRD. GI-XRD might introduce artifacts on the obtained diffraction patterns, e.g., differences in integrated areas or Bragg positions shifts. To address these issues, the crystallinity of a powder (multioriented) ZIF-8 sample was analyzed in a Bragg–Brentano (B–B) configuration and compared with both the calculated XRD pattern and the same powder sample measured by GI-XRD upon casting it onto a gold substrate (Figure 4a). As shown, the material features the expected diffraction peaks and GI configuration does not affect significantly integrated areas, FWHM values, or peak positions (see the SI for details). Calculated lattice constants are in good agreement with previously reported values (a = 17.00 Å, 17.01 Å for B–B and GI measurements respectively). Synthesized films were also analyzed by GI-XRD, and the results are shown in Figure 4b. As it can be seen, only 5x- films were thick enough to generate a clear XRD pattern even at GI experiments; however, the (110) diffraction peak at ~7.45° is visible for both 1x- films, confirming their crystalline structure. Lattice constants obtained from GI measurements of the films are also in line with reported values (16.94 and 16.77 Å, for 5x-ZIF-8@APTES and @MPSA, respectively). In addition, relative peak intensities and FWHM(110) were found to be similar for both systems, indicating no preferred crystalline orientation nor smaller/larger particle sizes (see the SI for details). To summarize, the films present the expected ZIF-8’s sod crystalline structure with no significant differences upon the use of APTES or MPSA primers. As previously mentioned for thickness, crystallinity is not then a parameter that should be used for a direct comparison between films grown on different surfaces.

Although crystalline domains seem to be equivalent, AFM analysis of the films revealed a notoriously different surface morphology, as suggested by QCM, SE, and XRR results discussed above. Figure 4c shows AFM images of films taken at 5 μm side-scan areas for 1x- and 5x-, corresponding to the use of APTES and MPSA primers. It is evident from the images that APTES-modification lead to more inhomogeneous films, with big structures or agglomerations, while MPSA-modification provides a distribution of nucleation sites that evolve into smoother films. Height profiles and mean roughness (R₅) values (Figure 4d) are a clear indication of the above statement, although R₅ value corresponds to 1x-ZIF-8@MPSA is similar to what obtained when using APTES. Finally, 5x-ZIF-8@MPSA has the lowest R₅ value of the set and the smoothest height profile. Despite these differences, coverage of the substrate is complete in every case, regardless of the surface modification employed.

Effect of Surface Modification on the Molecular Transport through the Films. Molecular transport and permselectivity are two of the most appealing aspects of porous films and both can be addressed by resorting to electro-chemical techniques. In traditional mesoporous films obtained, e.g., by sol–gel chemistry, permselectivity relies on monodisperse mesoporosity featured by such templated materials. For the hereby synthesized films, the analysis of molecular transport in aqueous environments possess a new degree of complexity, which is to unravel the above-discussed interplay between intrinsic microporosity and constructional (meso)porosity. The difference in polarity between mainly hydrophobic microporosity (dictated by dangling methyl groups on ZIF-8 pore windows) and more hydrophilic constructional porosity arises from partially coordinated 2-methylimidazole and zinc terminal sites (hydroxylated after exposure to aqueous environments).64 exposed on ZIF-8, as schematized in Figure 5a.

To perform these analyses, films need to be deposited onto conductive substrates, that allow the CV measurements. To
that end, samples in which APTES was used as primer were prepared onto ITO modified glass (see Methods for details). By ellipsometric experiments, APTES grafting was found to be equivalent on ITO and Si substrates, and thus, the density of nucleation points between both substrates is equivalent. Since the substrate own chemistry may have an impact on the characteristics of the film, 1x- and 5x-ZIF-8@APTES/ITO films were also characterized by XRR to determine their critical angles. The obtained results (see the SI for details) indicate that the films prepared on APTES-grafted ITO present an equivalent critical angle to the ones obtained onto Si and, consequently, equivalent electronic density (i.e., compactness). Thus, ITO supported films can be considered equivalent to Si supported samples and can be safely used for permeability experiments.

It is known that porous films might undergo dissolution and degradation by in-operando conditions used in aqueous environments. Having this in mind, and although 5x-ZIF-8@MPSA films were already proved to be stable under moderate ionic strength aqueous environments, the first issue we addressed here was whether permeation through films depended on contact time with aqueous environments or not. Considering the already reported charge-exclusion effect for ZIF-8 films for the diffusion of negatively charged redox probes, the above issue can be tackled. A 5x-ZIF-8@MPSA film grown on a gold QCM electrode was exposed to hexacyanoferrate redox probe solution for 24 h while applying voltage in a typical CV experiment. As shown in Figure 5b (top), the current density at $E = 0.250 \text{ V}$ due to Fe(CN)_6^{4-} redox probe is almost constant and almost 35 times lower than the current density expected for the bare gold electrode. Furthermore, changes in resonance frequency in dry conditions revealed that no significant mass loss took place after 24 h CV experiment, as shown in Figure 5b (bottom). The QCM device employed before for dissipation studies did not allow in situ electrochemical measurements, and thus, a different setup was used. Here, viscoelastic behavior was analyzed in terms of the motion resistance ΔR of the film in dry conditions. ΔR is directly related to viscoelastic behavior, and since we demonstrate that ZIF-8 films behave as rigid films by dissipation studies, the 7% decrease in ΔR indicates no significant changes in the elasticity of the film (see the SI for a more detailed discussion of motional resistance). To summarize, these results demonstrate that ZIF-8 films are stable toward electrochemical cycling conditions herein employed and that permeability studies will not depend on exposure periods to an aqueous environment nor have any effect on the structural properties of the films.

We then performed experiments oriented to analyze molecular transport using noncharged (ferrocenemethanol, FcMeOH hereinafter) and negatively charged (potassium ferrocyanide (II) and potassium ferricyanide (III) solution, ...
Fe(II/III) redox probes. CV experiments were conducted using 1x- and 5x- ZIF-8 films grown on APTES-grafted ITO electrodes and MPSA-modified gold electrodes. There are major differences between both probes, as results summarized in Figure 5c,d show. None of the explored films seem to significantly affect the diffusion of FeMeOH toward the electrode surface (Figure 5c). On the contrary, all the films explored block up to some point Fe(II/III) diffusion (Figure 5d). Given the similar kinetic diameters of probes used,72 this difference can only be rationalized by resorting to charge-exclusion effects.44

Typically, quantification of molecular transport through porous films is addressed by analyzing cyclic voltammetry experiments in terms of the Randles–Sevčík (RS) formalism, as described in the SI; however, 5x-ZIF-8@MPSA films cannot be modeled using RS. There is a strong deviation from expected linearity in the I vs $\nu^{1/2}$ plots, as well as changes in the CV shape. This means that the diffusion regime changes with the scan rate used and that the film-modified substrates behave as partially blocked electrodes (PBE).48 PBE refers to a situation in which the electrode geometrical area is not equivalent to the active area. Briefly, conductive substrates modified by ZIF-8 films can be seen as an array of spatially distributed microelectrodes with different percentages of surface blockage due to the presence of the porous film.73

Constructional porosity modifies center-to-center distance and the size of such microelectrodes, ultimately affecting the dominating diffusion regime operating, as schematized in Figure 6a. Those changes can be qualitatively accounted for by normalizing voltammograms and analyzing changes in their shape, in addition to considering the corresponding absolute current values. A full description of this approach can be found in the SI.

Applying PBE analysis to FeMeOH CV experiments, it was observed that 1x-ZIF-8@APTES film produces a low coverage of electrode surface (Figure 6b, top); voltammograms do not change in shape compared with the bare electrode at any of the explored scan rates. This is an indication of a planar diffusion regime over a low coverage PBE, i.e., large microelectrodes and/or short center-to-center distances among them, which leads to complete overlap of diffusion layers of individual microelectrodes. However, the voltammograms obtained with 5x-ZIF-8@APTES do change their shape for increasingly higher scan rates and, at the same time, the I vs $\nu^{1/2}$ plot deviates from linearity (see the SI). Such behavior is expected when the individual microelectrode size is smaller and/or...
center-to-center distance becomes larger; i.e., the compactness of the film increases. In other words, coverage of the electrode surface is greater. As compactness increases, diffusion layers of neighboring microelectrodes start to separate, creating a mixed planar + hemispherical diffusion regime. The same behavior was found for ZIF-8@MPSA films; however, the 1x-ZIF-8@MPSA film already had differences with the bare substrate (Figure 6c, top), indicating higher compactness of 1x-ZIF-8@MPSA compared with APTES-based films. For the sake of comparison, and considering that FcMeOH experiments on APTES-based films and 1x-ZIF-8@APTES can also be interpreted in terms of the RS formalism, effective diffusion coefficients (D_{eff}) were calculated (see the SI). The results are consistent with the case in which an overlapped planar diffusion layer with the same geometrical area as the bare electrode is present. Since some variability in the electrochemical response of substrate is expected, and differences among D_{eff} values may not be significant.

As mentioned above, all ZIF-8 films present charge-exclusion behavior toward negatively charged probes, being far more pronounced the effect on MPSA-primed films, and none of them can be interpreted by RS formalism. However, charge-exclusion behavior can be interpreted using the PBE analysis as an “effective” coverage larger than the real coverage; in other words, electrostatic repulsion between ZIF-8 pore walls corresponding to CP and the redox probe will block the smaller channels for probe diffusion, thus mimicking the result expected for a more compact film. For 1x-ZIF-8@APTES films, changes in the voltammograms shape are seen when using low (5 mV/s) and high (100 mV/s) scan rates, as shown in Figure 6b, bottom. Here, mixed planar + hemispherical diffusion regimes can be inferred. For the other films, i.e., 5x-ZIF-8@APTES and both 1x- and 5x-ZIF-8@MPSA (Figure 6c, bottom), the blockage is stronger and PBE analysis cannot be applied. The film structure affects probe diffusion in a way much more like a homogeneous and continuous membrane hindering transport toward the electrode surface, with this being the limiting process that dominates mass transfer.

CONCLUSIONS

In this work, we have shown how surface chemistry determines the growth rate, compactness and functional properties of ZIF-8 films synthesized by the straightforward one-pot liquid phase epitaxial method. Different characterization techniques were employed to address each different feature of the films, which are summarized in Table 2.

We have demonstrated the effect of the nucleation layer on the structural and functional characteristics of the ZIF-8 films. Although both surface modifications explored yield continuous ZIF-8 films, the MPSA self-assembled monolayer, with ~ 7 lower mass density than APTES but stronger interaction with Zn$^{2+}$, enables a constant and uniform growth rate (average 132
Characterization Techniques. Quartz crystal microbalance (QCM-D) and spectroscopic ellipsometry (SE) were employed to characterize film growth; X-ray reflectometry (XRR) and grazing-incidence X-ray diffraction (GI-XRD) were used for lateral structure, porosity, and crystallinity characterization of the films. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to characterize surface chemistry and topology. Cyclic voltammetry (CV) experiments were conducted in a three-electrode cell, and the results were analyzed via the partially blocked electrode model (PBE). A complete description of the equipment and methodology can be found in the SI.

ZIF-8 Film Growth. Substrate Preparation. Silicon slides of ~1 × 2.5 cm² where cut from 76.2 mm diameter single-side polished wafers. Substrates were then cleaned with acid piranha solution (Caution: Piranha solution is a very strong oxidant and is dangerous to handle without appropriate personal protection elements), washed thoroughly with Milli-Q water, and dried at 120 °C. Silanization was carried out by immersing substrates in 0.2 mM APTES toluene solution at 80 °C for 4 h. After silanization, substrates were washed with toluene and placed in an oven at 120 °C for 2 h for thermal annealing. Conductive ITO substrates were modified using the same procedure, but piranha treatment was replaced by a three-step immersion in an ultrasonic bath with soapy water, Milli-Q water, and ethanol. Gold substrates (~1 × 2.5 cm²) were immersed briefly in diluted acid piranha solution, washed with Milli-Q water, and dried in a N₂ stream. Gold substrates were then washed with 16 mM H₂SO₄ aqueous solution and then Milli-Q water and dried under N₂ stream.5,77

ZIF-8 Film Growth. ZIF-8 films were prepared following procedures previously reported.34,45 Briefly, modified substrates were placed in a glass vial at 25 °C as shown in Figure 1a, with the functionalized surface facing down. Then 25 mM Zn(NO₃)₂·6H₂O methanolic solution was added, covering the entire substrate. Then, an equal volume of 50 mM HmIm methanolic solution was promptly added, ensuring proper mixing. The final molar ratio was 1(Zn):2(HmIm):1978-methanol. After 30 min, the substrates were washed with methanol and dried under a N₂ stream. These steps constitute one growth cycle (n). By repeating the described cycle, the final film thickness can be increased.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.1c10425.

Experimental details; further information on characterization techniques; QCM mass density calculation, Sauerbrey’s and motion resistance experiments details; porosity estimation by XRR; XRD information; XPS surface characterization; electrochemical experiments and partially blocked electrode theory (PDF)

AUTHOR INFORMATION
Corresponding Authors
Juan A. Allegretto – Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina; Universidad Nacional de San Martín (UNSAM), San Martín B1650, Argentina; orcid.org/0000-0002-7371-2610; Email: allegretto@inifta.unlp.edu.ar

Matias Rafti – Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina; orcid.org/0000-0003-3393-358X; Email: mrafti@inifta.unlp.edu.ar

Authors

Melina Arcidiácono – Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina; orcid.org/0000-0001-5857-7046

Paula Y. Steinberg – Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, San Martín B1650, Argentina; orcid.org/0000-0002-4402-5045

Paula C. Angelomé – Instituto de Nanociencia y Nanotecnología, CONICET-CNEA, San Martín B1650, Argentina; Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, San Martín B1650, Argentina; orcid.org/0000-0002-4402-5045

Omar Azzaroni – Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1904DPI, Argentina; orcid.org/0000-0002-5098-0612

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.1c10425

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

REFERENCES

6733

https://doi.org/10.1021/acs.jpcc.1c10425

J. Phys. Chem. C 2022, 126, 6724−6735

