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A B S T R A C T   

Complex coacervates based on the combination of two oppositely charged biopolymers have been proposed as 
encapsulating and protective platforms for bioactive agents in food science. Lysozyme, an enzymatic protein used 
as a natural food preservative, was combined with other macromolecules (proteins and polysaccharides) to 
generate coacervate formulations. In this study, the design of coacervate-like structures based on lysozyme was 
extended through their combination with multivalent tripolyphosphate anion, a non-macromolecular food ad-
ditive. It was observed that direct mixing led to the formation of complex coacervates under certain ranges of pH, 
ionic strength, and component concentrations. Coacervates presented a suitable capacity to encapsulate poorly 
water-soluble curcumin. More interestingly, coacervates improved the chemical stability (under long-term 
storage and light irradiation) and antibacterial activity of curcumin. Therefore, these single macromolecule 
coacervates could be exploited as an active carrier platform for encapsulation in food applications.   

1. Introduction 

The combination of oppositely charged polyelectrolytes in an 
aqueous medium results in an associative phase separation in which a 
polyelectrolyte-poor phase and a polyelectrolyte-rich phase are formed 
(Blocher & Perry, 2017; Friedowitz et al., 2021; Sing & Perry, 2020). 
Depending on the macromolecules structures and the experimental pa-
rameters, the polyelectrolyte-rich phase can display characteristics of a 
liquid (complex coacervate), a solid, or a combination of both configu-
rations (Chen et al., 2021; Kurtz et al., 2019; Meng et al., 2020). 

Coacervation has been exploited for the design of soft formulations 
with applications in different technological fields, including food tech-
nology, personal care products, and medicine (Warnakulasuriya & 
Nickerson, 2018; Zhou et al., 2020). In food science, complex co-
acervates have been proposed dually: 1) as structuring and stabilizing 
materials in emulsions and 2) as carrier to encapsulate, protect and 
controlled release of bioactive agents (e.g., vitamins, antioxidants, 
antimicrobial, oil components and probiotics) (Cortés-Morales et al., 

2021; Devi et al., 2017; Moschakis & Biliaderis, 2017; Shaddel et al., 
2018; J. Zheng et al., 2020). 

Although polyelectrolytes are diverse and highly abundant in nature, 
food science relies primarily on proteins and polysaccharides due to 
their biocompatibility, high availability and nutritional properties 
(Eghbal & Choudhary, 2018; Santos et al., 2018, 2021). These bio-
polymers can present positive or negative net charges depending on the 
pH selected. Lysozyme (LYS) is a globular protein that is widely 
distributed in nature and it is used as a food natural preservative due to 
its bacteriostatic activity (Khorshidian et al., 2022; Wu et al., 2019). By 
its exceptional cationic character in a wide range of pH (pI ≈ 11.16 with 
12 charges per protein when fully ionized) (Kuehner et al., 1999), LYS is 
suitable to act as cationic building block in the preparation of poly-
electrolyte complexes. In this sense, a long series of protein/poly-
saccharide complexes have been reported based on the combination of 
LYS with pectin, hyaluronic acid, gum Arabic, cellulose, carrageenan, 
among others (Amara et al., 2017; Antonov & Zhuravleva, 2020; Z. Li 
et al., 2015; Xu et al., 2014; W. Zhang et al., 2020). Furthermore, 
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heteroprotein complexes were prepared from the assembly of LYS with 
other proteins, including gelatin B, soy proteins (β-conglycinin), whey 
proteins (β-casein, albumin bovine serum, α-lactalbumin, β-lactoglob-
ulin and lactoferrin), and egg proteins (ovalbumin) (Anema & de Kruif, 
2013; Antonov et al., 2017; Croguennec et al., 2017; Monteiro et al., 
2016). 

Recently, single-polyelectrolyte complexes have been prepared from 
assembly between a polyelectrolyte and an oppositely charged small ion 
(Agazzi et al., 2019; Herrera et al., 2019, 2020). Here, the small ion can 
be of any nature and even can come from the protonation or deproto-
nation of organic molecules like carboxylic acids and amines. Like 
polyelectrolyte complexes, polyelectrolyte-multivalent ion complexes 
can be obtained both as solid precipitates and liquid coacervates. As a 
constraint, for phase separation to occur, the charge of the small ion 
must be high enough (typically |z| ≥ 2) (Herrera et al., 2023). 
Frequently, polyamines (i.e., polyallylamine, polyethylenimine, poly-
lysine and chitosan) have been shown to form complexes with multi-
valent anions such as phosphates, citrates, and sulphates, among others 
(Agazzi et al., 2020a; Agazzi et al., 2020; Kumari et al., 2019; Lawrence 
& Lapitsky, 2015). Lapitsky et al. reported several studies using poly-
allylamine/tripolyphosphate (TPP) coacervates to encapsulate different 
molecules, including therapeutics and biocides agents (Alam et al., 
2020; 2021, de Silva et al., 2018). Previously, it was shown that poly-
phosphates (including TPP) have the ability to modify the solubility of 
LYS and induce associative phase separation of proteins (Bye & Curtis, 
2019; Bye et al., 2013). Because TPP is a cheap multivalent molecule 
widely used as food additive (Lampila, 2013), its combination with LYS 
could allow the preparation of food-grade coacervates for encapsulation 
of bioactive molecules. 

One of the most attractive nutraceutical and functional agents in 
food industry is curcumin (CUR), a bioactive natural compound ob-
tained from the root of Curcuma longa. CUR is used as coloring and 
flavoring agents in food processing (Rafiee et al., 2019). Recently, it has 
emerged as a promising plant-based preservative due to its antioxidant 
and antimicrobial properties (Gómez-Estaca et al., 2017; Zorofchian 
Moghadamtousi et al., 2014). However, CUR is highly hydrophobic and 
unstable in the presence of different environmental conditions such as 
light irradiation (B. Zheng & McClements, 2020). To improve its solu-
bility and stability, different encapsulation strategies have been applied 
such as emulsions, biopolymer nanoparticles, vesicles, among others 
(Rafiee et al., 2019; B. Zheng & McClements, 2020). Also, coacervates 
have been exploited as CUR encapsulating platforms (Mirmohammad 
Meiguni et al., 2022; Shahgholian & Rajabzadeh, 2016). Particularly, 
LYS-based coacervates with conglycinin and cellulose showed ability to 
encapsulate and protect CUR (Z. Li et al., 2015; J. Zheng et al., 2022). 

Given the previously described background, this work explores for 
the first time the physicochemical and encapsulation properties of 
single-biomacromolecule complex coacervates based on the combina-
tion of two food additives such as LYS and TPP. We study the formation 
and physical-chemical properties of LYS/TPP complexes varying the 
components concentrations, pH and ionic strength. Then, the encapsu-
lation and protection (under long-term storage and light irradiation) of 
CUR was evaluated. Finally, the antibacterial activity of complexes and 
CUR-loaded complexes was analyzed. The results indicate that this new 
type of complex coacervate present attractive and promising properties 
for microencapsulation of functional food additives. 

2. Materials and methods 

2.1. Materials 

The lyophilized Lysozyme powder (L6876, protein ≥90%) from 
chicken egg white, sodium tripolyphosphate (STPP) and curcumin 
(CUR) from Curcuma longa (Turmeric) were purchased from Sigma- 
Aldrich (St. Louis, MO, USA). All chemicals were used without further 
purification. 

2.2. Preparation of LYS/TPP complex coacervates 

LYS/TPP complex coacervates were formed by mixing equal volumes 
of aqueous solutions of LYS (10 mg mL− 1, pH 4) and TPP (100 mM, pH 
8.5) in deionized water. The pH of both solutions was adjusted with 
aliquots of HCl or NaOH solutions (0.1 M). The final pH after mixing was 
around 9. The colloidal solution was kept at room temperature until 
complete phase separation. To assess the range of concentrations where 
phase separation occurs, complex formation was evaluated by mixing 
different final concentrations of LYS (0.5, 1, 2.5, 5, and 10 mg mL− 1) and 
TPP (0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15, 20, 25, 40, 50 mM). 

2.3. Zeta potential measurements 

Zeta potential measurements were carried out with a ZetaSizer Nano 
(ZEN3600, Malvern, U.K.) at 20 ◦C using DTS1060 disposable cuvettes. 
Particle Zeta potential was determined from the electrophoretic 
mobility by Laser Doppler Velocimetry using a general-purpose analysis 
method with 100 runs for each sample. 

2.4. Turbidity measurements 

The transmittance (T) of samples were recorded at 580 nm using a 1 
cm pathlength glass cuvettes by a Shimadzu UV-2401PC spectropho-
tometer (SHIMADZU Co., Japan). Milli-Q water was used to calibrate for 
100% transmittance. The turbidity was calculated as follows:  

Turbidity = -LnT                                                                                   

2.5. Protein crosslinking yield 

The previously prepared LYS/TPP complexes were centrifuged at 
9000×g for 5 min. The protein content that remained in the supernatant 
was determined by measuring the absorption of LYS at 280 nm and using 
a calibration curve in water (Fig. S1a). 

The protein crosslinking yield was calculated as follows: 

Protein crosslinking yield (%)=

(

1 −
LYZ in supernatant
Total LYZ content

)

x 100%  

2.6. Microscopic observation 

Microscopic observations were made with an inverted microscope 
(BIM500FL, Bioimager, ON, Canada). Samples were first prepared in 1.5 
mL microcentrifuge tubes and allowed to settle for 1 h for the phase 
separation to fully form. Then, 20 μL of coacervate mixture were placed 
on a glass slide. Images were collected using a 100 × magnification 
objective with oil immersion (Carl Zeiss CP ACHROMAT 40 × ; Carl 
Zeiss CP ACHROMAT 100 × , NA = 1.25). 

2.7. CUR encapsulation efficiency 

CUR-containing complexes were prepared added CUR to LYS solu-
tion from a stock solution (8 mg mL− 1) in absolute ethanol under 
magnetically stirred conditions. After that, TPP was added to the mix to 
activate the complexation. For encapsulation measurements, LYS/CUR/ 
TPP complexes were centrifuged at 9000×g for 5 min. CUR remaining in 
the supernatant was determined by measuring the absorption at 425 nm 
and using a calibration curve in ethanol/10% water (Fig. S1b). Next, the 
encapsulation efficiency was calculated as follows: 

Encapsulation efficiency (%)=

(

1 −
CUR in supernatant
Total CUR content

)

x 100%  
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2.8. CUR degradation experiments 

Degradation of CUR by storage over time and light irradiation were 
performed for the LYS/CUR/TPP complexes and control solutions of 
LYS/CUR, TPP/CUR and CUR free. In all cases, the following component 
concentrations were used: 2.5 mg mL− 1, LYS, 2.5 mM TPP and 250 μg 
mL− 1 CUR. The remaining CUR at the end of the experiment (see next 
section) was determined following a protocol previously (J. Zheng et al., 
2022). For the complexes LYS/CUR/TPP, the samples were vortexed 
after adding absolute ethanol (five times the initial volume) to extract 
the remaining CUR. Mixtures were then centrifuged at 9000×g for 5 min 
to remove the LYS/TPP complexes without CUR. The content of CUR in 
the remaining supernatant was determined by UV–Vis absorption at 425 
nm using a calibration curve of CUR in absolute ethanol/10% water. The 
preservation of CUR over time was calculated as follows: 

CUR preservation porcentage (%)=
Remaining CUR

Initial CUR content
x 100%  

2.8.1. Photochemical degradation 
LYS/CUR/TPP complexes and aqueous solutions at pH 9 of LYS/ 

CUR, TPP/CUR and CUR free were irradiated at two different intervals 
of times (2.5 and 5 h) with visible light. As a source of irradiation, a 
Novamat 130 AF projector (Braun Photo Technik, Nürnberg, Germany) 
equipped with a 150 W halogen lamp was used. A 2.5 cm wide water- 
filled cuvette was used as a filter to absorb the heat from the lamp. 

2.8.2. Storage stability 
The free CUR, TPP/CUR, LYS/CUR, and LYS/CUR/TPP complexes at 

pH 9 were stored at 4 ◦C in dark for different intervals of time (1, 5, 10, 
15 and 20 days). 

2.9. Lysozyme enzyme activity 

The enzymatic activity of LYS was analyzed using the well- 
established method of inducing cellular lysis in Micrococcus luteus 
(Yang et al., 2017). To measure the effect of ionic complexation on LYS 
lytic activity, the optical density at 600 nm (OD600nm) was measured in 
Micrococcus luteus culture in the presence of samples of LYS (5 mg mL− 1), 
LYS/TPP complexes (5 mg mL− 1 LYS, 2.5 mM TPP) and disassembled 
LYS/TPP complexes. or the latter, the complex coacervates were allowed 
to settle for 2 h and then disassembled by reducing the pH to 6, obtaining 
uncomplexed LYS and TPP. Culture of M. luteus was prepared in Müel-
ler-Hinton (M-H) broth (Britania, Buenos Aires, Argentina) and incu-
bated for 24 h at 37 ◦C. Then, a 1/10 dilution (~106 CFU mL− 1) was 
made and 2 ml aliquots of the culture were divided into test tubes. 
Samples were added to each tube at a final concentration of 5 mg mL− 1 

LYS and 2.5 mM TPP. Then they were incubated for 90 min at 37 ◦C in an 
orbital shaker (Ferca). Finally, the OD600nm for each sample was 
measured in a spectrophotometer (Spectrum, SP 2000). The growth 
control was M. luteus grown in M-H broth. 

2.10. Curcumin antibacterial activity 

The antimicrobial activity of LYS/CUR/TPP complexes (2.5 mg 
mL− 1, 250 μg mL− 1 CUR and 2.5 mM TPP) in water/5% ethanol was 
evaluated on three Gram positive strains (Staphylococcus aureus ATCC 
25923, S. aureus DM1 and S. aureus DM2) employing a modification of 
the Kirby–Bauer methodology (Clinical and Laboratory Standards 
Institute, 2012). Briefly, Petri plates with Müeller Hinton agar (MHA) 
were seeded with 100 μL of each standardized microbial suspension (0.5 
McFarland scale) and spread with Drigalsky spatula. Then, drops (20 μL) 
with different concentrations of LYS/CUR/TPP complex coacervates 
were placed on previously seeded MHA plates and incubated at 37 ◦C for 
18–24 h. Besides, LYS free (2.5 mg mL− 1 in water/5% ethanol), TPP free 
(2.5 Mm in water/5% ethanol), CUR (50, 250 and 500 μg mL− 1 in 

water/5% ethanol), and LYS/TPP (2.5 mg mL− 1 LYS and 2.5 mM TPP) 
controls were studied. In addition, the activity of complexes loaded with 
CUR was measured after 20 days post-preparation and compared with 
CUR in water/5% ethanol after 20 days of storage. The inhibitory ac-
tivity was evaluated by measuring the diameter of the clear zone 
(growth inhibition halo) around the drop. The diameter of the growth 
inhibition halo constitutes a measure of the susceptibility of the bacte-
rium to each sample applied. In all cases, the experiments were carried 
out in triplicate. 

The antibacterial activity was also evaluated by monitoring the 
growth curves of the S. aureus ATCC 25923 strain in the presence of LYS/ 
CUR/TPP complexes and controls (LYS, LYS/TPP complexes and CUR). 
In all cases the concentrations of LYS, TPP and CUR were 2.5 mg mL− 1, 
2.5 mM and 250 μg mL− 1, respectively. Bacteria were grown aerobically 
on a rotator shaker (100 rpm) at 37 ◦C in MH broth overnight. Then, a 
portion (20 μL) of this culture was transferred to 20 mL of fresh MH 
broth medium. This suspension was homogenized, and 1 mL aliquots of 
microbial stock solution were placed in culture tubes with 1 mL of each 
sample. Each tube was incubated at 37 ◦C and the cell culture growth 
was monitored by turbidity at 700 nm every 60 min. Moreover, growth 
control (GC) was performed to know the normal development of the 
microorganism and then be able to compare with the obtained curves 
after the different treatments. GC consisted of 1 mL of microbial sus-
pension and 1 mL sterile water. All measurements were performed in 
triplicate. 

3. Results and discussion 

3.1. Preparation and characterization of LYS/TPP complex coacervates 

Complexation of LYS with TPP was qualitatively studied by direct 
mixing of components in aqueous solutions and under constant stirring, 
varying different parameters such as initial pHs (pH0) and relative 
concentrations. In the process, we detected a dramatic increase in 
turbidity, especially when working with TPP at pH0 = 8.5 and LYS at 
pH0 = 4. Note that, in this scenario, TPP displays 5 net charges per 
molecule (pKa1 = 1; pKa2 = 2.2; pKa3 = 2.3; pKa4 = 5.7; pKa5 = 8.5) and 
LYS present a cationic character (pI = 11.16). The increase in turbidity is 
indicative of the formation of complexes between LYS and TPP, driven 
by the formation of ion pairs between positively charged residues in LYS 
and TPP anions. In most of cases, the final pH of the solution was ~9, 
which is indicative of the releasing of OH− during the complexation 
process. This could be indicative of the forced (or cooperative) ioniza-
tion over uncharged LYS amine moieties (Petrov et al., 2003). 

A simplified representation of the phase separation process is shown 
in Fig. 1. Immediately after complexation, the solution was highly turbid 
(colloidal dispersion of LYS/TPP complexes). After a few minutes, two 
distinct macroscopic phases were spontaneously separated: one trans-
lucent at the top and one opaque at the bottom (see pictures in Fig. 1). 

To explore the concentration regions space where phase separation is 
produced, LYS and TPP were combined at different concentrations and 
the samples were allowed to stand for 1 h. Fig. 2a shows the concen-
tration zone where phase separation occurred (colored dots). As can be 
observed in the plot, below [LYS] = 1 mg mL− 1 the system is unable to 
form complexes, independently on the concentration of TPP. This sets a 
minimum concentration of LYS molecules needed to produce complex-
ation with TPP. For all concentrations of LYS, we also found that there is 
a minimum concentration of TPP where an appreciable phase separation 
occurs. Furthermore, we also observed that, for a given concentration of 
LYS, there is a second phase boundary at which the system resolubilize 
(a maximum TPP concentration). In this case, the maximum TPP con-
centration was found to increase linearly with the concentration of LYS 
(see second transition line in the phase diagram). As so, at fixed LYS 
concentration, the system first condenses into 2 phases (first threshold) 
and then transitions back into a 1-phase system (second threshold) with 
increasing TPP concentration. This phenomenon is known as re-entrant 
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condensation. The first TPP threshold is given when the minimum of 
multivalent ions that are necessary to overcome repulsive interactions 
between positively charged proteins is reached. On the other hand, the 
second transition threshold can either be attributed to overcharging of 
the protein by the addition of an excess of multivalent ions or to charge- 
screening effects (Bye & Curtis, 2019). 

Next, we studied the phase separation behavior by registering the 
ξ-potential at three LYS concentrations (1, 2.5 and 5 mg mL− 1) and 
variable TPP concentration (Fig. 2b). As it was expected, the phase 
separation region is coincident with ξ-potentials close to neutrality (Iξ- 
potentialI< 5 mV). As TPP concentration increases, the maximum 
complexation takes place when the charges on the protein are fully 
compensated by TPP anions. In these conditions (ξ-potential≈0 mV), 
complexes formed present a poor colloidal stability, which facilitates the 
formation of two macroscopic phases rapidly. 

The phase separation process also was explored by turbidity and 
protein crosslinking efficiency (protein crosslinking yield) measure-
ments. We observed that turbidity increased as TPP was added until 
reaching a maximum in the phase separation region (Fig. 3a). Then, with 
further TPP addition, turbidity decreased until practically total trans-
parency was reached, indicating protein re-solubilization. In addition, 
turbidity within the phase separation region was consistently higher for 
increasing concentrations of LYS. For example, for LYS at 1, 2.5 and 5 
mg mL− 1 (at TPP concentration of 2.5 mM) the turbidity values were 
1.37, 3.0 and 4.6, respectively. 

The content of protein within the complex phase (protein cross-
linking yield) is nearly a mirror image of the turbidity curve, with the 
highest values within the phase separation region (Fig. 3b). Further-
more, the crosslinking yield increased for increasing LYS concentrations. 
For example, at 1, 2.5 and 5 mg mL− 1 of LYS (at TPP concentration of 
2.5 mM) the maximum crosslinking yields were 37%, 73%, and 81%, 
respectively. After determining the concentration region where the 
phase separation occurred, we proceeded to study the properties of the 
aggregates under these conditions. 

The condensed phase can exist in different physical states: co-
acervates (liquid-liquid phase separation), precipitates (solid-liquid 
phase separation), or a combination of both configurations (Comert & 
Dubin, 2017; Comert et al., 2016). The final state of the aggregate will 
depend on a balance of weak interactions (hydrophilicity, hydrogen 
bonding, electrostatics) which vary depending on various parameters as 
concentrations, ionization degree, polyelectrolyte’s backbone structure, 
ionic strength, and pH. These parameters influence the strength of the 
attractive force that determines the dominance of each configuration 
(Thongkaew et al., 2015; J. Zheng et al., 2022b). Typically, bright-field 
microscopy and phase-contrast microscopy are used as the main tech-
niques to distinguish liquid-liquid phase separation from solid-liquid 
phase separation (Devi et al., 2017; Marciel et al., 2017). When liquid 

Fig. 1. Simplified representation of phase separation process activated by the LYS/TPP complexation.  

Fig. 2. a) Region of LYS and TPP concentrations where the phase separation 
occurs (colored circles indicate the presence of two phases) b) Zeta potential as 
a function of TPP concentration at three LYS concentrations (1, 2.5 and 5 mg 
mL− 1). The phase separation zone is colored in blue in both plots. 
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coacervates are obtained, spherical and micro-sized droplets are 
observed (Moulik et al., 2022). Instead, precipitates looks as irregular 
and amorphous flocs under the microscope (Archut et al., 2022). Fig. 4 
shows images obtained by microscopy for three complexes with 
LYS/TPP mass ratios of 1.1:1 (1 mg mL− 1 LYS, 2.5 mM TPP), 2.7:1 (2.5 
mg mL− 1 LYS, 2.5 mM TPP), and 5.4:1 (5 mg mL− 1 LYS, 2.5 mM TPP). As 

can be seen, micron-sized coacervates droplets were observed coexisting 
with amorphous flocs. Previous studies found a similar coexistence be-
tween both configurations for other coacervate systems (Cummings & 
Obermeyer, 2018; X. Li et al., 2020). For example, Renard and collab-
orators studied complexes formed by the vegetable protein napin and 
pectin, observing that coacervate droplets can coexist with amorphous 
precipitates depending on the mixing ratio (Amine et al., 2019). More 
recently, Zheng et al. visualized the coexistence of both arrangements 
for LYS/conglycinin heteroproteins complexes under certain experi-
mental parameters (J. Zheng et al., 2021). 

Although some ambiguity can be found in the literature between the 
terms “coacervates” and “precipitates”, strictly, complex coacervates are 
those that appear as spherical microdroplets in microscopic observation. 
Bearing this clarification in mind, and considering that a combination of 
morphologies was observed microscopically, we cautiously chose to use 
the term coacervates. 

3.2. Effect of pH and salt 

The effect of changes in pH and salt was evaluated by turbidity 
measurements. Fig. 5 summarizes the main results obtained for three 
complexes with fixed TPP concentration of 2.5 mM and increasing LYS 
concentration (1, 2.5 and 5 mg mL− 1 and LYS:TPP mass ratios of 1.1:1.0, 
2.7:1.0 and 5.4:1.0, respectively). As mentioned before, the pH of the 
solution right after mixing was equal to 9. Turbidity measurements were 
performed while varying the pH of the solution adding either HCl (from 
9 to 4.5) or NaOH (from 9 to 11). The plot in Fig. 5a shows the overlay of 
all measurements. Starting from pH 9, as pH was forced to decrease, 
turbidity decreased smoothly up to pH 7 and then abruptly decreased 
reaching complete disassembly around pH 6.5. As the pH becomes more 
acidic, the net anionic charge of TPP decreases and the cationic charge of 
LYS increases. During this process, the loss of charge in TPP molecules 
by protonation produces the dissociation of complexes and the 
concomitant decrease in turbidity. However, between pH 9 and 7, the 
complexes are not totally disassembled thanks to the increase in the 
cationic character of LYS that favors the stabilization of the complex. At 
pH > 9, turbidity decreases dramatically until reaching a minimum at 
pH 10 due to the loss of charge on LYS (amine moieties became 
deprotonated at alkaline pH). In addition, the effect of pH was also 
evaluated by maintaining a fixed LYS concentration (2.5 mg mL− 1) and 
varying the concentration of TPP (1, 2.5 and 5 mM of TPP and LYS:TPP 
mass ratios of 1:0.15, 1:0.37 y 1:0.73, respectively). For all concentra-
tions of TPP under study, a behavior similar to the previous case was 
observed (Fig. S2a). 

Complexes behavior against the addition of salt (NaCl) was evalu-
ated for different concentrations of LYS, keeping the concentration of 
TPP constant at 2.5 mM (1, 2.5 and 5 mg mL− 1 and LYS:TPP mass ratios 
of 1.1:1, 2.7:1 and 5.4:1, respectively). As shown in Fig. 5b, there is a 
critical salt concentration where the coacervates are disassembled 
(turbidity close to 0). The concentration of salt at which the complex is 
dissolved is known as the salt resistance (L. Li et al., 2018). As can be 
observed in the plot, the salt resistance increases with the concentration 
of LYS. More precisely, for 1, 2.5 and 5 mg mL− 1 of LYS the salt re-
sistances were 15, 25 and 35 mM, respectively. The dissolution of 
complexes by addition of monovalent salts is a commonly seen effect 
that can be explained in terms of counterion replacement (i.e., sodium 
and chloride anions provoke the disruption of intrinsic ion pairs between 
amine groups in LYS and TPP anions, destabilizing the complex). 
Therefore, at higher LYS concentrations, more chloride ions are needed 
to achieve the disassembly, compared to a lower protein concentration. 
In addition, ionic strength effect was examined keeping the LYS con-
centration fixed (2.5 mg mL− 1) while varying TPP concentration (1, 2.5 
and 5 mM and mass ratio of 1:0.15, 1.0.37 y 1:0.73, respectively). Here, 
for 1 and 5 mM TPP, complexes are disassembled before in comparison 
with 2.5 mM TPP (Fig. S2b). For the lower concentration of TPP, the 
weakening of LYS/TPP interactions in the presence of salt is higher 

Fig. 3. Evolution of turbidity and protein crosslinking yield as a function of 
TPP concentration at 1 mg mL− 1 (a), 2.5 mg mL− 1 (b) and 5 mg mL− 1 (c) of LYS. 
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compared to 2.5 mM TPP (less chloride ions are needed to displace TPP 
anions). For the case of 5 mM TPP, the behavior can be explained 
considering that, in these conditions, there is less LYS assembled in the 
complexes in comparison to the complexes obtained with 2.5 mM TPP 
(see Fig. 3). At 5 mM TPP, the lower content of crosslinked LYS implies 
that there are less ion pairs to disrupt, therefore, the salt resistance 
decreases. 

The morphology of LYS/TPP complexes at different pH and ionic 
strength was also explored by optical microscopy (Figs. S3 and S4). A 
coexistence between the two states of liquid-liquid and solid-liquid 
separation was observed again, but it was observed that changes in pH 
and ionic strength could have an impact on the predominance of each 
conformation. Liquid coacervates seems to be favored at acidic pHs and 
increasing ionic strengths. Although the mechanism behind the 
competition between liquid coacervates and solid precipitates is outside 
the scope of the present work, this result can be explained in terms of the 
interaction strength between LYS and TPP as: 1) the decrease in pH 
produces the protonation of phosphate groups in TPP, therefore, 
weakening the interaction between LYS and TPP, and 2) the disruption 
of intrinsic ion pairs and formation of extrinsic ion pairs by the presence 
of NaCl produces the uptake of water molecules from the surroundings, 
therefore, producing a more hydrated complex (Tirrell, 2018; Y. Zhang 
et al., 2018). Previously, different authors have observed that the 
competition between the two conformations of complexes can be 
modulated by pH changes or salt addition (Amine et al., 2019; Cum-
mings & Obermeyer, 2018; Vieregg et al., 2018). In particular, 
LYS/β-lactoglobulin heteroprotein complex have been shown to display 
a transition from a solid form (at pH 7) to a liquid form (at pH 6.8) due to 
the reduction of the charge of β-lactoglobulin, leading to a weaker 
electrostatic interaction (Ainis et al., 2019). A similar behavior was re-
ported for LYS/conglycinin complexes as a solid-liquid transition was 
observed from pH 8 to pH 6, dominated by a reduction in the number of 
conglycinin charges (J. Zheng et al., 2021). In addition, LYS/conglycinin 
complexes exhibit solid-to-liquid phase transition in the presence of 
NaCl (J. Zheng et al., 2022b; 2022a). 

3.3. Encapsulation and protection of curcumin 

Complex coacervation is one of the simplest and most sustainable 
microencapsulation methods because it is based on straightforward 

mixing of the components at room temperature and in aqueous solu-
tions. Here, LYS/TPP coacervates are proposed to act with a dual 
functionality: 1) as encapsulants of CUR to overcome the limitation of 
poor water solubility, and 2) as protective matrices to improve CUR 
stability under certain environmental conditions (aqueous long-term 
storage and light irradiation). Previously, alternative LYS-based com-
plexes were exploited to encapsulate and protect CUR. Li and co-workers 
efficiently encapsulated CUR in micro-complexes of LYS assembled with 
polysaccharides such as carboxymethylcellulose and k-carrageenan (Z. 
Li et al., 2015; Xu et al., 2014). More recently, Gao et al. demonstrated 
that heteroprotein complex coacervates and precipitates of LYS and 
β-conglycinin exhibit high CUR loading efficiencies over a broad spec-
trum of components and cargo molecules concentrations (J. Zheng et al., 
2022). 

Here, the encapsulation capacity of LYS/TPP coacervates was 
examined under different experimental conditions. CUR was added to 
the LYS solution from a stock solution in ethanol before complexation 
with TPP. It should be mentioned that the presence of CUR and ethanol 
did not considerably modify the previously discussed properties of the 
complexes. Fig. 6b shows the phase separation for LYS/TPP complexes 
(2.5 mg mL− 1 LYS, 2.5 mM TPP and LYS:TPP mass ratio of 1:0.37) at 
different concentrations of CUR. By visually observing the partition of 
CUR in the two phases, it can be verified that CUR is efficiently encap-
sulated in the coacervate phase. The efficient loading of CUR in the 
coacervate droplets was also observed by microscopy (Fig. 6c). In 
addition, encapsulation can also be visualized in the precipitated com-
plexes. In previous reports, different authors observed that CUR can bind 
to different proteins (including LYS) through hydrophobic interactions 
(Somu & Paul, 2021). Moreover, CUR at pH 9 acquires a negative charge 
due to the deprotonation of one of its hydroxyl groups (Fig. 6a) 
(Tønnesen & Karlsen, 1985; B. Zheng & McClements, 2020). Therefore, 
CUR molecules can also enhance their encapsulation by electrostatic 
interaction with cationic moieties of LYS. 

The encapsulation efficiency was further analyzed quantitatively as a 
function of different variables, i.e., CUR concentration and LYS con-
centration. Fig. 6d shows the CUR encapsulation efficiency of the LYS/ 
TPP system at different CUR concentrations (ranging from 10 to 500 μg 
mL− 1) using a constant TPP concentration and three different LYS 
concentrations (1, 2.5, and 5 mg mL− 1). The CUR encapsulation effi-
ciency was found to increase monotonically with CUR concentration, 

Fig. 4. Images obtained by optical microscopy for different LYS/TPP complexes (pH 9): a) 1 mg mL− 1 LYS, 2.5 mM TPP, 1.1:1 LYS/TPP b) 2.5 mg mL− 1 LYS, 2.5 mM 
TPP, 2.7:1 LYS/TPP and c) 5 mg mL− 1 LYS, 2.5 mM TPP, 5.4:1 LYS/TPP. 
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reaching a plateau of 80–90% for [CUR]~250 μg mL− 1 for all LYS 
concentrations. This result appears to be counterintuitive since one 
would expect that an increase in CUR concentration will produce a 
decreasing of the cargo loading by saturation of binding sites. Zheng 
et al. found a small increase in encapsulation efficiency for the LYS/ 
conglycinin system when the CUR concentration was increased from 
130 to 250 mg mL− 1 at three pH values (6, 7 and 8) (J. Zheng, Gao, Ge, 
Sun, et al., 2022). In contrast, we observed a substantial increase in the 
encapsulation rates as the concentration of CUR increased. As encap-
sulation experiments were carried out at pH 9, CUR can actually func-
tion as an anionic crosslinker due its net negative charge (pKa1 = 8.31, 
pKa2 = 10.0, pKa3 = 10.2) (Leung et al., 2008). Therefore, CUR can be 
considered as a third component in the formation of the coacervate. In 
other words, in the presence of CUR, the coacervate phase is composed 
not only by ion pairs of LYS and TPP but also by ion pairs between LYS 
and CUR, this last, enhanced by hydrophobic interactions. To evaluate 
the interaction between CUR and LYS, absorption spectra of CUR (at 
concentrations of 10, 15, and 25 μg mL− 1) were recorded at pH 7 (where 
the net charge of CUR is 0) and pH 9 (where the net charge of CUR is 
− 1). The results are presented in Fig. S5, which shows that at pH 7, the 

spectral band position does not exhibit appreciable changes, except for a 
small hypochromic shift of 2 nm observed for 25 μg mL− 1 of CUR. 
However, at alkaline pH, hypsochromic shifts of 7 and 12 nm were 
recorded for 10 and 25 μg mL− 1 of CUR, respectively. At 15 μg mL− 1 of 
CUR, a minor shift of approximately 2 nm was found. Taken together, 
these results confirm the electrostatic interaction between LYS and CUR 
and suggest that the formation of LYS/CUR complexes at pH 9 depends 
on the concentration of CUR. Previously, Lapitsky et al. observed a 
similar trend in the encapsulation efficiencies of polyallylamine/TPP 
coacervates with anionic cargo molecules such as the therapeutic 
ibuprofen and the dye Fast Green FCF. (de Silva et al., 2018; Lawrence 
et al., 2016). Moreover, Nguyen et al. demonstrated that CUR interacts 
strongly with polycations in aqueous solutions (M.-H. Nguyen et al., 
2016; M. H. Nguyen et al., 2015) On the other hand, it was demonstrated 
that poorly charged hydrophobic molecules like ciprofloxacin can 
effectively act as crosslinkers of polycations (Cheow & Hadinoto, 2012; 
Yu & Hadinoto, 2017). In a similar way that the protein crosslinking 
yield increased dramatically when raising TPP concentration from 0 to 
5 mM (see Fig. 3), the CUR encapsulation efficiency (which in the 
context of a three-component coacervate can be thought as the CUR 
crosslinking yield) increase dramatically from 0 to 250 μg mL− 1 (0.65 
mM CUR). According to the typical behavior of multivalent 
molecule-based complex coacervates (Herrera et al., 2023), all multi-
valent molecules must overcome a minimum concentration in order to 
act as ionic crosslinkers of polycations. This could be the main cause for 
the burst of CUR loading around 250 μg mL− 1. In addition, there could 
be competition for the LYS binding site between CUR and TPP, which 
may also explain the dependence of the encapsulation rates on the 
concentration of CUR. Specifically, at higher concentrations, the 
displacement of CUR by TPP may be less significant, leading to increased 
encapsulation. 

The effect of TPP concentration on CUR encapsulation for the three 
LYS concentrations (1, 2.5, and 5 mg mL− 1) is depicted in Fig. 6e. For all 
three cases, a decrease in encapsulation was observed with an increase 
in TPP concentration. This behavior may be due to the decrease in the 
protein crosslinking yield with increasing TPP concentration (Fig. 3). In 
parallel, TPP can compete with CUR for binding sites on the protein, 
decreasing the payload encapsulation. 

Other LYS-based coacervate complexes have reported maximum 
encapsulation efficiencies of about 90%. For example, Zheng et al. re-
ported encapsulation efficiencies of close to 95% for LYS/conglycinin 
complexes (J. Zheng et al., 2022). Li et al. found that LYS/CMC co-
acervates can load CUR with efficiencies of around 99% (Z. Li et al., 
2015). In addition, complexes formed by other macromolecules have 
exhibited efficiencies greater than 90%, such as gum arabic/bovine 
serum albumin complexes (92%) (Shahgholian & Rajabzadeh, 2016), 
gum Arabic/whey protein complexes (98.88%) (Mohammadian et al., 
2019), pea protein isolate/high methoxyl pectin complexes (97.33%) 
(Guo et al., 2020), and mung bean protein and succinylated chitosan 
complexes (89%) (Mirmohammad Meiguni et al., 2022). On the other 
hand, the level of encapsulation efficiency obtained in the present study 
was significantly higher than that of many other types of carriers. For 
example, complex coacervates of LYS and κ-carrageenan exhibited an 
encapsulation efficiency of about 71% (Xu et al., 2014), while gliadin 
and sodium alginate complexes showed an efficiency of 81% (Su et al., 
2021). Additionally, nanocomplexes of bovine serum albumin and pol-
y-D-lysine presented an encapsulation efficiency of 60% (Maldonado 
et al., 2017). Recently, we report an encapsulation efficiency of 60% for 
poly-L-lysine dendrigraft/TPP nanocomplexes (Agazzi et al., 2020). 

To evaluate the protective performance of the complexes, the sta-
bility of CUR was monitored under long-term storage conditions in 
aqueous solutions and under irradiation with visible light. For these 
studies, LYS/TPP complex with a mass ratio of 1:0.37 (2.5 mg mL− 1 LYS 
and 2.5 mM TPP) and a CUR concentration of 250 μg mL− 1 were 
selected. Firstly, complexes with CUR and corresponding controls 
(aqueous solutions at pH 9 of CUR free, CUR/LYS and CUR/TPP) were 

Fig. 5. Evolution of turbidity of LYS/TPP complexes (2.5 mM TPP and LYS/ 
TPP mass ratio of 1.1:1, 2.7:1 and 5.4:1) as a function of (a) pH and (b) NaCl 
concentration. 
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stored at 4 ◦C in the dark for 1, 5, 10, 15 and 20 days. Fig. 7a shows the 
percentage of CUR preservation as a function of time for each sample. 
The LYS/TPP coacervates presented an enhanced protective capacity, 
showing a preservation percentage close to 90% after 20 days of storage. 
The LYS/CUR control assay also showed little degradation (82% of 
preservation at 20 days), possibly due to hydrophobic and electrostatic 
interactions between CUR and LYS that could improve the molecules 
stability. Other studies have reported the ability of coacervates to sta-
bilize CUR during long-term storage. For instance, CUR encapsulated in 
LYS/conglycinin coacervates at alkaline pH was preserved at 67% after 
14 days of storage at 4 ◦C (J. Zheng et al., 2022). In addition, Moham-
madian et al. observed visually that the appearance of CUR loaded in 
complex coacervates made of gum arabic and whey protein nanofibrils 
remained unchanged after 15 days (Mohammadian et al., 2019). 

Finally, the effect of light on the encapsulated CUR was explored 
using a visible light irradiation lamp at two intervals of irradiation (2.5 
h y 5 h). It is known that CUR is easily degradable by light, causing it to 
lose its functional properties (Priyadarsini, 2009; B. Zheng & McCle-
ments, 2020). Previously, LYS/conglycinin and LYS/κ-carrageenan 
complexes showed the ability to act as light screens and improved the 
chemical stability of CUR (Xu et al., 2014; J. Zheng et al., 2022). As can 
be seen in Fig. 7b, the lowest photo-degradation rate was observed for 
the CUR encapsulated in coacervates. After 5 h of irradiation, CUR 
preservation percentages for CUR free, CUR/TPP, and CUR/LYS were 
26%, 28%, and 31%, respectively. Instead, CUR trapped in the com-
plexes showed a preservation of 55%, indicating that LYS/TPP co-
acervates can prolong the lifetime of the bioactive agent in aqueous 
conditions under visible light irradiation. The protection mechanism is 
possibly due to the fact that coacervates act as a thick barrier that de-
creases the penetration and impact of light on CUR molecules (Guo 
et al., 2020). 

Although comparing different systems is challenging due to varia-
tions in irradiation conditions such as sources, intensity, and distance 
between lamp and sample, the light shielding capacity provided by our 
system is comparable to that observed for other complexes. For instance, 
light-protective ability of LYS/conglycinin complexes was evaluated at 
pH 8 for CUR. They observed that after 5 h of simulated light irradiation, 
the preservation rate of CUR was 78%. However, after 3 h of sunlight 
exposure, the preservation rate dropped to 30% (J. Zheng et al., 2022). 
Salami and co-workers found that CUR encapsulated in gum Arabic/-
whey protein complexes remained 80% intact after 15 days of visible 

light irradiation (Mohammadian et al., 2019). The same authors 
observed about 60% preservation of CUR in complexes of mung bean 
protein and succinylated chitosan (Mirmohammad Meiguni et al., 
2022). 

3.4. Lysozyme enzyme activity 

First, the effect of TPP complexation on the antibacterial activity of 
LYS was analyzed. For this, the growth inhibition of M. luteus was 
monitored by measuring the decrease in the OD600nm of cell cultures 
by adding TPP (2.5 mM), LYS (5 mg mL− 1), LYS/TPP complexes (5 mg 
mL− 1 LYS, 2.5 mM TPP) and LYS/TPP disassembled (see section 2.9). 
Fig. 8 summarizes the results obtained. As can be seen, both LYS/TPP 
complexes and disassembled LYS/TPP complexes showed a decrease in 
OD600nm similar to that observed for LYS free. Furthermore, no 
inhibitory activity was detected for TPP alone. This result indicates the 
enzymatic activity of LYS is not significantly affected by the presence of 
TPP. 

As a supplementary analysis, the possible presence of biofilms on the 
walls of the previously prepared treatment tubes was qualitatively 
assessed after 16 h. Formation of biofilms with intense yellow color was 
observed on the control tube and the TPP tube (Fig. S6). However, for 
the treatments that included LYS (LYS, LYS/TPP complexes, and dis-
assembled LYS/TPP), a lower formation was visualized. In addition, a 
bleaching of the strains was noted in the presence of the enzyme sam-
ples, resulting in a whitish color instead of the characteristic yellow 
pigment. Notably, the samples with LYS/TPP and disassembled LYS/ 
TPP complexes showed a similar reduction in biofilm formation as 
observed with LYS alone. This observation reinforces what was previ-
ously discussed regarding the negligible effect of ionic complexation on 
the enzymatic activity of LYS. It has been determined that antimicrobial 
compounds could act as signaling molecules with an effect on the 
modulation of some functions such as biofilm formation, pigmentation, 
metabolite production, motility, among others (Das & Mehta, 2018; 
Latimer et al., 2012; Romero et al., 2011). 

Previous studies showed different behaviors regarding the persis-
tence of LYS enzymatic activity after coacervation. Several reports 
indicated that the antibacterial activity was reduced after coacervation 
with low methoxyl pectin, sodium alginate, carboxymethyl cellulose and 
Arthrospira platensis protein (Amara et al., 2016; Bayarri et al., 2014; 
Benelhadj et al., 2016; Wang et al., 2021). This activity decline may be 

Fig. 6. (a) Chemical structure of CUR, (b) Real image 
of phase separation for LYS/CUR/TPP (2.5 mg mL− 1 

LYS, 2.5 mm TPP and LYS:TPP mass ratio of 1:0.37) 
complexes at different CUR concentrations, (c) Image 
obtained by optical microscopy of LYS/CUR/TPP 
(2.5 mg mL− 1 LYS, 2.5 mM TPP and 100 μg mL− 1 

CUR) complexes; (d) Encapsulation efficiency as a 
function of CUR and LYS concentrations for different 
complexes (2.5 mM TPP) and (e) Encapsulation effi-
ciency of CUR (100 μg mL− 1) as a function of TPP 
concentration for different complexes at three LYS 
concentrations (1, 2.5 and 5 mg mL− 1).   
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caused by a steric hindrance between LYS active sites and its substrate 
(bacteria cell wall) generated by LYS aggregation. However, other 
studies showed that the antibacterial activity of LYS is little affected by 
complexation. Recently, it was reported that, under certain experi-
mental conditions, LYS complexed with conglycinin and carboxymethyl 
konjac glucomannan retain the lytic activity (J. Zheng et al., 2021). 

3.5. Curcumin antibacterial activity 

The antibacterial capacity of the encapsulated CUR at three con-
centrations (50, 250 and 500 μg mL− 1) was evaluated against different 
strains of S. aureus (ATCC 25923, DM1 and DM2). S. aureus is a Gram- 
positive bacterium frequently causing foodborne disease (Kadariya 
et al., 2014). LYS (2.5 mg mL− 1), TPP (2.5 mM), LYS/TPP complexes 
(2.5 mg mL− 1 LYS, 2.5 mM TPP) and CUR (50, 250 and 500 μg mL− 1) 
were applied as controls. For the three strains, only the regions where 
the complexes/CUR were deposited showed bacterial growth inhibition 
(Fig. 9). In all cases, a growth inhibition halo of approximately 1 cm in 
diameter was observed. Surprisingly, under these experimental condi-
tions the samples with LYS did not show an appreciable antibacterial 
effect. Possibly, the enzyme presents little diffusion in the agarized 
medium, limiting its antibacterial activity. The size of the growth inhi-
bition halo is influenced by different factors, including the diffusion 
capacity of the compound (Balouiri et al., 2016). 

The antibacterial activity of CUR free (250 μg mL− 1 CUR) in water 
and trapped in coacervates (2.5 mg mL− 1 LYS, 250 μg mL− 1 CUR, 2.5 
mM TPP) was tested against S. aureus ATCC 25923. CUR showed very 
little antibacterial effect at all three concentrations (Fig. 9d, circles 1, 2 
and 3). This may be due to the poor dispersibility in an aqueous medium 

that affects its diffusion in an agarized medium (Anand et al., 2007; 
Somu & Paul, 2021). Interestingly, LYS/CUR/TPP complexes after 20 
days of storage continued to show inhibition to bacteria growth (Fig. 9d, 
circle 5). Instead, CUR alone under the same storage time and conditions 
showed no activity (Fig. 9d, circle 4). These results are consistent with 
those previously presented (Fig. 7a) where it was observed that the 
complexes enhance the long-term stability of the CUR in aqueous me-
dium. Taken all together, these results indicate that the complexes 

Fig. 7. Percentage of preservation of CUR as a function of storage time (5 ◦C in 
the dark) (a) and irradiation time with visible light (b) in samples of CUR (250 
μg mL− 1), TPP/CUR (2.5 mM TPP, 250 μg mL− 1 CUR), LYS/CUR (2.5 mg mL− 1 

LYS, 250 μg mL− 1 CUR) and LYS/CUR/TPP complexes (2.5 mg mL− 1 LYS, 250 
μg mL− 1 CUR and 2.5 mM TPP). 

Fig. 8. OD600nm of M. luteus cultures after 90 min incubation with different 
samples: Control (M. luteus 106 CFU mL− 1), TPP (2.5 mM), LYS (5 mg mL− 1), 
LYS/TPP (5 mg mL− 1 LYS, 2.5 mM TPP) and disassembled LYS/TPP. 

Fig. 9. Antibacterial activity of the complexes LYS/CUR/TPP against S. aureus 
DM1 (a), DM2 (b) and ATCC 25923 (c and d). For (a), (b) and (c): 1) LYS; 2) 
TPP; 3) LYS/TPP; 4) LYS/CUR/TPP (50 μg mL− 1 CUR); 5) LYS/CUR/TPP (250 
μg mL− 1 CUR); 6) LYS/CUR/TPP (500 μg mL− 1 CUR). For (d) 1) CUR (50 μg 
mL− 1); 2) CUR (250 μg mL− 1); 3) CUR (500 μg mL− 1); 4) CUR (50 μg mL− 1 CUR 
in water/5% ethanol) after 20 days of storage and 5) LYS/CUR/TPP (250 μg 
mL− 1 CUR) after 20 days of storage. In all cases the concentrations of LYS and 
TPP were 2.5 mg mL− 1 and 2.5 mM, respectively. All samples were prepared in 
water/5% ethanol. 
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significantly improve and preserve the antibacterial activity of CUR in 
aqueous media. 

The antibacterial effect of CUR in the complexes was also analyzed 
using the growth delay curve assay. The growth curves of S. aureus 
exposed to different treatments are depicted in Fig. S7. The growth curve 
(GC) plots showed the normal growth pattern of the microorganism 
under the experimental conditions. When culture was exposed to free 
LYS and LYS/TPP complexes, the growth pattern was similar to (GC), 
confirming previous findings from microbiological studies conducted on 
solid medium (Fig. 9). In contrast, when cultures were exposed to free 
CUR and CUR encapsulated in the complexes, they did not reach the 
exponential phase even after 12 h. This result indicates that the com-
plexes do not affect the antibacterial activity of CUR in the free liquid 
culture medium. Intriguingly, after 24 h of incubation, only the encap-
sulated CUR continued to inhibit growth (Fig. S7B). In contrast, in the 
presence of free CUR, the bacteria exhibited growth after this prolonged 
incubation period. This discrepancy suggests that the treatment with 
LYS/CUR/TPP complexes exerts a bactericidal effect on S. aureus, 
whereas free CUR displays a bacteriostatic action. This difference may 
be attributed to the aggregation of CUR, which exhibits slight solubility 
in an aqueous medium over extended time periods. 

4. Conclusion 

In this work, we evaluated for the first time the carrier properties of 
single-macromolecule complex coacervates based on the direct mixing 
of two food additives: protein LYS and multivalent anion TPP. Physi-
cochemical studies indicated that the occurrence and performance of the 
two-phase separation is strongly dependent on the concentrations of 
components, ionic strength and pH. Furthermore, it was observed that in 
the concentrated phase, the complexes exhibit a combination of two 
physical configurations: liquid complex coacervates and amorphous 
solid precipitates. Preliminary studies indicated that the dominance of 
each of these morphologies could be modulated by changes in pH and 
ionic strength. On the other hand, it was confirmed that enzymatic ac-
tivity of LYS is not affected by complexation with TPP. 

The encapsulation capacities of the complexes were evaluated used 
CUR. The results showed that LYS/TPP coacervates are highly efficient 
to encapsulate and stabilize the bioactive agent under long storage 
conditions and irradiation of visible light. In addition, it was observed 
that the encapsulation of CUR optimizes its antibacterial performance. 
In summary, we believe that bioactive LYS/TPP complexes present 
attractive properties to act as encapsulants and protectors of functional 
agents (particularly CUR) for foodtech applications. This first report on 
LYS/TPP complexes as a platform for microencapsulation opens the way 
for future studies that focus on different aspects of these materials such 
as: comprehensive evaluation of the properties and formation yield of 
coacervates by modulating the components mas ratios and the initial 
pH, film-forming properties and complexes behavior in food matrices, 
encapsulation and co-encapsulation of other food additives, powder 
formulation by applying processing techniques such as freeze or spray 
drying, among others. 
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