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xv

Sensors are ubiquitous in modern life. They surround us, monitor our body function 
and our environment, protect us, help us communicate with each other, and make 
work more efficient and less strenuous. It is not at all surprising that the market 
demand for better and more efficient sensors is only increasing. For instance, in 
2019, the sensor market size was of approximately US$ 167 billion, and it is expected 
to reach US$ 346 billion by 2028. However, progress in sensor’s development passes 
unequivocally through the evolution of advanced materials that can convert differ-
ent types of environmental energy into energy that can be processed either digitally 
or analogically with high accuracy, short response time, long‐term thermal and 
noise stability, linearity, low power consumption, and cost. These characteristics 
impose stringent constraints on the type of materials that can be used in sensor 
development. Since its isolation in 2004, graphene has been lauded as the ultimate 
material for sensing applications because of its unique physical properties, namely, 
high electrical and thermal conductivity, large Young modulus, high sensitivity to 
chemicals and strain, and, most of all, its large surface area to volume ratio. It is 
famously said that the interface is the device. We can also say that the surface is the 
sensor. Detection usually occurs at the surface of a material and, hence, the larger 
the ratio of surface area to the volume of the device, the higher the ability of the 
device to detect. Graphene sensors have high accuracy because graphene is a pure 
surface (no bulk) and can detect minute amounts of chemical, electrical, magnetic, 
and stress signals and convert them into signals that can be processed and commu-
nicated to other devices. The literature on graphene sensors has grown exponen-
tially in the last decade, and it is quite hard to follow this growth and even separate 
“tares from wheat.” The book by Omar Azzaroni and Wolfgang Knoll on advanced 
bioelectronic devices for sensing applications using graphene field‐effect transistors 
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Forewordxvi

is a breath of fresh air in this crowded research space. I believe it will become a fun-
damental reference for any researcher, engineer, or industrialist who is interested in 
learning why graphene is the ultimate sensor material.

Singapore, November 2022				   Prof. Antonio H. Castro Neto
Director, Centre for Advanced  

2D Materials (CA2DM)
Co‐Director, Institute for Functional  

Intelligent Materials (I‐FIM)
Distinguished Professor, Department of  

Material Science Engineering
Distinguished Professor,  

Department of Physics
Professor, Department of Electrical and  

Computer Engineering
National University of Singapore
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xvii

The discovery of a layer of graphene, one atom‐thin, by Andre Geim and Konstantin 
Novoselov (Nobel Prize in Physics 2010) at the University of Manchester (UK) in 
2004 created a whole new scientific field and resulted in robust technologies that 
strongly contributed to the development of advanced devices.

Among different graphene‐based innovations, the graphene field‐effect transistor 
(GFET) represents a remarkable example of an advanced electronic device. GFETs 
employ the typical configuration of a field‐effect transistor (FET) device using a 
graphene channel – constituted of a lattice of carbon atoms that is only one atom 
thick! – between source and drain. Keeping this in mind, we can understand why 
GFETs exhibit unprecedented sensitivity, which can be exploited in a wide variety 
of sensing and biosensing applications. Contrary to the conventional view of bulk 
semiconductors, such as silicon, used in traditional FETs, the use of graphene to 
create FETs marks a profound departure from long‐established notions and 
approaches to create semiconductor devices and puts them into practice.

From a historical perspective, traditional transistor sensors are three‐dimensional 
semiconductor devices in which changes in electric charge at the surface of the 
channel do not always translate into a device response. As the reader can probably 
imagine, this fact can dramatically limit the sensitivity of the device.

In stark contrast, in GFETs, the channel is made from a two‐dimensional mate-
rial, which directly exposes the channel to any molecules in the surroundings. In 
this scenario, the local gating effect is much more effective than that in conventional 
devices because the species modulating the electric field can be directly attached to 
the “entire” transistor channel.

While the use of GFETs in biosensing and bioelectronics has been in the experi-
mental phase for years, it is only recently that this technology has gradually shifted 
to a commercial stage [1–3]. For instance, a report from McKinsey estimates that 
graphene‐related technologies will become a US$ 70B market by 2030 [4].

By nature, the subject of bioelectronics is diverse and interdisciplinary, and, as 
such, chemists, biologists, physicists, materials scientists, and engineers can make 
valuable contributions to the field. It is now clear within the scientific community 
that the successful translation of research in graphene transistors to commercial 
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Prefacexviii

reality requires the harmonization of four universes: electronics, biology, physics, 
and chemistry. Indeed, the journey from basic science to technological applications 
has been compellingly described by Herbert Kroemer (Nobel Prize in Physics 
2000) [5]: “Even if the process from science and technology to applications is opportun-
istic rather than deterministic, we can speed up this process by better cross‐discipline 
communication between scientists, technologists, and application engineers.” In this 
regard, a non‐negligible merit of engineers, physicists, biologists, and chemists has 
been their willingness to overcome the fences in which they have been traditionally 
confined and to promote collaboration with “apparently” unrelated research areas.

In this book, our aim is to show the wide potential of GFETs as advanced bioelec-
tronic platforms and also to promote the potential of the technology among scien-
tists, students, postdoctoral fellows, engineers, and industrial researchers. In 
addition, we also hope that this book will help convince decision‐makers from aca-
demia, government, and industry to cooperate in developing a comprehensive 
GFET roadmap to accelerate the manufacturing and commercialization of this 
promising technology.

We are pleased to have edited this book, and we are honored that so many con-
tributors from all over the world (see map below) have accepted our invitation and 
taken time to write significant contributions. We are grateful to the authors who 
have always been very responsive and enthusiastic about the idea of the book. The 
invaluable efforts of these authors from 14 different countries with 38 different affil-
iations have helped build a comprehensive book that may be used as an advanced 
textbook by graduate students and young scientists, as well as a valuable reference 
for academic and industrial professionals performing research and development in 
the specific area of biosensing and bioelectronics.

Last, but not least, we thank Antonio H. Castro Neto, a pioneer in the field of 
graphene as an electronic material, for his Foreword, and we thank you so much for 
taking the time to read this book.

Wolfgang Knoll
Vienna

March 2023

Omar Azzaroni
La Plata

March 2023
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